TCTAP 2015 Late-Breaking clinical Trials

Statin Treatment Can Stabilize Coronary Plaque Vulnerability: A Double-Blind, Randomized Study

Seung-Jung Park, Soo-Jin Kang, Jung-Min Ahn, Mineok Chang, Sung-Cheol Yun, Jae Hyung Roh, Pil Hyung Lee, Hyun Woo Park, Sung-Han Yoon, Duk-Woo Park, Seung-Whan Lee, Young-Hak Kim, Cheol Whan Lee, Gary S. Mintz, Ki Hoon Han, Seong-Wook Park

Department of Cardiology, Univ. of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

Grant/ research support

- AstraZeneca and Volcano
- Eagle Eye catheters from Volcano
- C7 Dragonfly TM catheters from Light Lab/ St. Jude Medical
- AstraZeneca for providing incidental expenses and drugs
- CardioVascular Research Foundation, Seoul, Korea

Background

Stone G et al. PROSPECT, N Engl J Med 2011;364:226-5

It is unclear how statin alters the natural course of coronary atherosclerosis in vulnerable plaques

To see the effect of statin on stabilizing plaque vulnerability in fibroatheroma-containing target segments, and to compare the efficacy of high- vs. moderate-intensity rosuvastatin

Eligibility

- Consecutive patients 18 to 75 years of age with clinical indication of coronary angiography
- At least 1 deferred native coronary lesion with
 1) visually-estimated angiographic DS 20–50% or
 2) DS>50% without inducible ischemia*

**FFR*≥0.8 or no thallium perfusion defect in target vessel territory

Exclusion Criteria

1.	Planned cardiac surgery
----	-------------------------

- 2. Stroke or resuscitated sudden death in the past 6 months.
- 3. Chronic disease requiring treatment with corticosteroids
- 4. Untreated hyperthyroidism, or hypothyroidism with TSH >1.5 times UNL
- 5. A diagnosis of cancer (other than superficial squamous or basal cell skin cancer) in the past 3 years or current treatment for the active cancer
- 6. Any clinically significant abnormality identified at the screening visit,
- 7. Evidence of congestive heart failure, or LV ejection fraction < 40%.
- 8. Significant renal disease manifested by serum creatinine \geq 2.0mg/dL, or creatinine clearance of < 40 ml/min (by Cockcroft-Gault method)
- 9. Hepatic disease or biliary tract obstruction, or ALT or AST > 3 times UNL
- 10. History of myopathy or elevated creatine kinase (CK) > 3 times UNL
- 11. History of asthma in the past 6 months, or currently taking anti-asthmatic med
- 12. Unwillingness or inability to comply with the procedures
- 13. History of arterial bypass or PCI involving the target vessel.
- 14. The luminal narrowing in the target vessel or in LMCA (DS > 50%)

15. Reference vessel diameter of the target vessel < 2.5mm on angiogram

- 16. Presence of thrombus in the target vessel (high risk of distal embolism)
- 17. Severe tortuosity of the target vessel (inappropriate for IVUS procedures)

Selection of Index Lesion eligible for the study

Flow of VH-IVUS Screening

STABLE Trial

(<u>STatin and Atheroma VulneraBiLity Evaluation</u>)

Prospective, Single Center, Double-blinded, Randomized

Total 312 patients who had at least 1 deferred native coronary lesion with *VH-defined FA*-containing index lesion

2:1 randomization (double-blinded)

High-intensity Rosuvastatin 40mg/d Moderate-intensity Rosuvastatin 10mg/d

40MHz Grayscale- and 20MHz VH-IVUS at baseline and 12 mo

Primary: change in %NC volume within the target segment

Secondary: change in %NC volume in rosuvastatin 40 vs. 10mg

ClinicalTrials.gov number NCT00997880

Grayscale- and VH-IVUS

- Every 1.0mm interval within the target segment between distal and proximal fiduciary points, volumetric analysis was done by Simpson's method and then normalized for length
- Normalized TAV and PAV
- With EEM/lumen VH-IVUS contouring every 0.40mm, %NC volume, plaque type and VH-TCFA were measured

Nissen et al. ASTEROID, JAMA 2004;291:1071–80 Stone et al. PROSPECT, N Engl J Med 2011;364:226-5 1. Fibrotic plaque

- 2. Fibrocalcific plaque
- 3. Pathological intimal thickening (PIT)
- 4. Thick-cap fibroatheroma (ThCFA)

5. Thin-cap fibroatheroma (TCFA)

Sample Size

- Primary endpoint; To assess the segmental %NC volume change in the target segment 265 patients were required for 90% power and 2-sided type I error of 5% to detect an expected 1.0% difference, assuming SD of 5%. With a dropout rate of 15%, enrollment of <u>312 patients</u> (allocated to rosuvastatin 40mg vs. 10mg in 2:1 ratio) was pre-specified
- Secondary endpoint: To assess the %NC volume change between rosuvastatin 40mg vs. 10mg, 276 patients were required for 90% power and 2-sided type I error of 5% to detect an expected 5.0% difference between the groups, assuming SD of 12%. A total of <u>312 patients</u> was calculated

F/U imaging was completed in 225 (72%) patients and 225 non-culprit lesions

Reasons for Discontinuation in 87 (28%) Pts.

Adverse statin effects

AST/ALT elevation (9), Urticaria (1), Myalgia (2), Azoter Headache (1), Chest discomfort (1), Leg edema (1), Vo

New diagnosis of colon cancer

Disease progression

Noncompliance

Loss to follow-up

Pt. withdrawal of consent before statin admi

Pt. withdrawal of consent *during treatment*

Patient's refusal of follow-up imaging study

Results

Characteristics of Patients at Baseline

	Total	40mg	10mg	Ρ
Ν	225	152	73	
Age (years)	62.0 (57.0–69.0)	62.0 (56.2–70.0)	62.0 (57.0–68.0)	0.632
Male	164 (73%)	108 (71%)	56 (77%)	0.425
Diabetes	56 (25%)	40 (26%)	16 (22%)	0.762
Hypertension	142 (63%)	103 (68%)	42 (58%)	0.180
Smoking	71 (32%)	46 (30%)	25 (34%)	0.465
Hyperlipidemia	132 (59%)	84 (55%)	28 (65%)	0.390
Statin-naïve	153 (68%)	47 (31%)	25 (34%)	0.805
BMI, kg/m²	24.9 (23.5–26.8)	24.7 (23.2–26.7)	25.7 (23.7–27.3)	0.099
ACS	94 (42%)	61 (40%)	33 (45%)	0.281

Lipid Profiles and hs-CRP

Vascular Changes after 12-month Statin

Pre-specified Endpoints

- Primary: change in %NC volume within the target segment
- Secondary: change in %NC volume in rosuvastatin 40 vs. 10mg

Changes in Plaque Types and Composition

At the index site	Baseline	Follow-up	р
VH-TCFA	123 (54.7%)	44 (19.6%)	
Thick-cap fibroatheroma	102 (45.3%)	159 (70.7%)	
Pathologic intimal thickening	0 (0%)	19 (8.4%)	<0.001
Fibrous	0 (0%)	3 (1.3%)	
Fibrocalcific	0 (0%)	0 (0%)	

Changes in Atheroma and %NC Volume

	Overall	Rosuvastatin 40mg	Rosuvastatin 10mg	Р
∆Normalized TAV	-12.6 mm³/mm (-28.3 - 4.5)	-12.7 mm³/mm (-29.0 — 3.3)	-12.4 mm³/mm (-26.7 — 8.6)	0.72
ΔPAV	-0.6% (-3.8 – 2.0)	-0.6% (-3.7 – 2.0)	-0.3% (-3.9 – 2.1)	0.73
Frequency of normalized TAV reduction	67.1%	69.1%	63.0%	0.22
Frequency of %NC volume reduction	62.7%	64.5%	58.9%	0.25

Correlations Among Biological and Morphological Parameters

Multivariable Predictors of Change in %NC

Variables at baseline		Change %NC volume			
		Beta	SE	p value	
Age		0.013	0.064	0.84	
Male		1.212	1.308	0.35	
Diabetes mellitus		1.741	1.342	0.19	
Body mass index β=0.37, 95% CI=0.05– 0.70					
ACS		-0.539	1.181	0.65	
Statin-naïve		-1.205	1.854	0.52	
Statin 10mg (vs. 40mg)		1.548	1.240	0.21	
LDL cholesterol		-0.002	0.017	0.89	
Hs-CRP β=-3.16, 95% CI= -5.64– -0.69					
Normalized TAV		-0.009	0.008	0.25	
% NC volume β=-0.44, 95% CI= -0.68– -0.19					
TCFA at index site		-4.308	1.134	<0.001	

ASAN Medical Center

Subgroup-specific Effects of Statins Changes According to MLA, PB and VH-TCFA

	MLA		Plaque burden		VH-TCFA	
	≤4.0mm²	>4.0mm ²	<70%	≥70%	No TCFA	TCFA
Ν	117 (52%)	108 (48%)	120 (53%)	105 (47%)	102 (45%)	123 (55%)
ΔNormalized TAV, mm ³ /mm	-7.9 (-24.8–4.5)	-16.6 (-36.1–5.4)	-7.4 (-23.6–8.2)	-18.3 (-38.7–2.1)	-6.7 (-23.5– -6.8)	-13.9 (-32.9 – 3.9)
ΔPAV,%	-0.90% (-3.85–1.95)	0.29% (-3.70–2.10)	0.56% (-3.5– 2.5)	-1.81% * (-3.97–1.39)	0.25% (-3.9–2.31)	-0.98% (-3.77–1.74)
∆%NC volume	-2.1% (-8.8 – 3.5)	-3.3% (-7.8 – 1.6)	-2.1% (-6.5 – 4.8)	-4.1% * (-11.0 – 1.2)	-1.1% (-6.2–3.7)	-4.2%
Δ %NC, index	-11.5% (-18.7– -3.1)	-10.6% (-20.1– -3.6)	-9.9% (-18.2– -2.8)	-11.7% * (-21.7– -5.0)	-9.7% (-16– -3.7)	-13.2%

COLLEGE MEDICINE

Clinical Outcomes at 12 Months

	Non-culprit related	Culprit-related
Patient No	225	175
12-month MACE	8 (3.6%)	4 (2.3%)
Death	0%	0%
Clinically-driven TLR	7 (3.1%)	3 (1.7%)
MI	1 (0.5%)	1 (0.6%) ST

No difference in non-culprit related MACE between Rosuvastatin 40mg vs. 10mg (3.9% vs. 2.7%, p=NS)

*MACEs defined as the composites of death, myocardial infarction, TLR

Limitations

- High drop-out rate of 28%
- Relatively short follow-up duration
- Insufficient sample size for detailed subgroup-specific analysis and for proving an incremental effect of LDL-C
- Inability of VH-IVUS to identify histologic TCFA (<65µm)
- Validation issue of VH-IVUS in serial follow-up study
- Lack of placebo group to compare natural history
- Do not apply these results to more advanced ischemiaproducing lesions or non-FA containing lesions

Summary

- In fibroatheroma-containing target segment, rosuvastatin 10 mg and 40mg stabilized plaque vulnerability (decrease in %NC volume and TCFA) and reduced atheroma volumes
- At baseline a lower BMI, a higher hs-CRP and a larger %NC volume predicted more reduction in %NC volume
- Although high- (vs. moderate-) intensity statin more intensely reduced LDL-C, intravascular imaging effects were equivalent in Asian
- Considering the correlation between the changes in %NC volume and hs-CRP (not LDL-C), anti-inflammatory action may be the main mechanism of plaque stabilization

