Clinical Impact of OCT-Guided PCI

2015. 12. 4 Eun-Seok Shin MD,PhD Division of Cardiology, Department of Internal Medicine Ulsan University Hospital University of Ulsan College of Medicine

Predictors of Stent Failure: early thrombosis, restenosis

Minimum lumen area Stent underexpansion Edge dissection Residual stenosis Tissue protrusion Large plaque burden Geographic miss etc...

IVUS & OCT

High-definition visualization

IVUS & OCT

Reducing death, MI, TLR stent thrombosis after PCI

So What?

Acute vessel wall injury after stenting

Tissue prolapse: 100% Intrastent dissection: 92% Edge dissection: 28% ISA: 64% Thrombus: 44%

→ No associated with clinical outcome

<u>J Invasive Cardiol.</u> 2010 Sep;22(9):435-9.

ILUMIEN I

Observational Study of Optical Coherence Tomography (OCT) in Patients Undergoing Fractional Flow Reserve (FFR) and Percutaneous Coronary Intervention – Stage I

418 pts prospectively enrolled 35 sites in North America, EU, Asia and Australia

Patients with stable angina, unstable angina or NSTEMI plus at least 1 angiographically significant stenosis (>50% by visual estimation) in ≥1 native coronary artery

Mandatory use of FFR and OCT pre and post PCI; PCI strongly recommended for FFR ≤0.80

Clinical FU at 30 days, 1 year

Stone G et al. TCT 2014

Rates and types of abnormal findings by post-PCI OCT

OCT variables	All abnormalities by core Laboratory, n/N	Rate (%)	Abnormalities deemed unsatisfactory by operator, n/N	Rate (%)
Edge dissection	107/388	27.6	11/408	2.7
Malapposition	126/392	32.1	59/408	14.5
Under-expansion	159/385	41.3	31/408	7.6
Edge dissection and malapposition	34/388	8.8	2/408	0.5
Edge dissection and under-expansion	35/385	9.1	2/408	0.5
Malapposition and tissue protrusion	44/392	11.2	2/408	0.5
Edge dissection, malapposition, and under-expansion	14/385	3.6	0/408	0
Thrombus or tissue protrusion ^a	100/392	25.5	4/408	1.0

*Edge dissection >180° in more than five frames
*Significant malapposition defined as >200 micron in at least five consecutive frames
*Thrombus and/or tissue protrusion on OCT causing flow reduction

(i.e. TIMI < 3 and/or obstruction visible by angiography).

*Under-expansion ≥30% by OCT compared with reference distal lumen area and

when quantitative coronary angiogram (QCA) shows >20% in-stent residual diameter stenosis.

Impact of OCT on PCI

Pre-PCI (n=467 lesions)

Post-PCI (n=467 lesions)

Selecting different stent lengths (shorter in 25%, longer in 43%).

Additional in-stent post-dilatation (81%) Placement of new stents (12%)

ILUMIEN I. EHJ 2015 Aug 4

Post hoc analysis

MACE at 30 days: death 0.25%, MI 7.7%, repeat PCI 1.7%, and stent thrombosis 0.25%.

Pre-PCI/ Post-PCI	No/No	Yes/No	No/Yes	Yes/Yes	P Value
Mean Number of Stents	1.17	1.2	1.33	1.5	.001
Mean Post-PCI FFR	0.89	0.89	0.89	0.86	.003
Mean Procedure Duration, mins	88	90	94	106	.0043
Mean Post-PCI MLA, mm ²	6.1	5.2	5.3	5.0	.004
30-Day Events MACE MI ^a	10.9% 10.2%	9.8% 8.6%	12.5% 12.5%	0 0	.077 .017

Incidence and Clinical Significance of Poststent OCT Findings: 900 lesions (786 patients)

	No-DoCE	DoCE	
	(795 lesions)	(39 lesions)	<i>P</i> Value
Stent edge dissection	230 (28.9)	12 (30.8)	0.789
Proximal stent edge dissection	125 (15.7)	9 (23.1)	0.202
Distal stent edge dissection	126 (15.8)	8 (20.5)	0.430
Instent dissection	535 (67.3)	24 (61.5)	0.488
Incomplete stent apposition	305 (38.4)	14 (35.9)	0.765
Instent tissue protrusion	767 (96.5)	39 (100)	0.636
Smooth protrusion	735 (92.5)	37 (94.9)	0.688
Disrupted fibrous tissue protrusion	490 (61.6)	21 (53.8)	0.330
Irregular protrusion	416 (52.3)	29 (74.4)	0.003
Thrombus	302 (38.0)	20 (51.3)	0.132
Stent underexpansion	296 (37.2)	13 (33.3)	0.656
Small MSA	321 (40.4)	23 (59.0)	0.039
Minimal stent area, mm²	5.8 ± 2.0	5.4±2.0	0.264
Minimal lumen area, mm²	5.9 ± 2.0	5.4±2.0	0.224
Proximal reference area, mm ²	7.8±3.0	7.2±3.2	0.392
Distal reference area, mm ²	6.3±2.7	5.9 ± 2.9	0.429

Device-oriented clinical endpoints (DOCE):

Cardiac death, Target vessel-related MI, TLR, Stent thrombosis.

Circulation. 2015;132:1020-1029

Minimal stent area associated with outcome

B. Bare metal stent

A. Drug eluting stent

Poststent OCT findings

Circulation. 2015;132:1020-1029

TLR event free survival distributions of lesions

OCT results for subacute thrombosis

Am Heart J 2015;169:249-256

OCT results in subacute thrombosis & control

Am Heart J 2015;169:249-256

Clinical events of stent malapposition

Acute stent malapposition: 62% Late-persistent stent malapposition: 31% Late-acquired stent malapposition: 15%.

	Overall Patients (N=351)	Both Late-Persistent and Late-Acquired Stent Malapposition (n=23)	Late-Acquired Stent Malapposition Alone (n=31)	Late-Persistent Stent Malapposition Alone (n=45)	No Stent Malapposition (n=252)	<i>P</i> Value
Follow-up duration after PCI, mo	28.6±10.3	24.3±4.3	27.7±10.0	28.4±9.2	29.1±10.8	0.175
Follow-up duration after follow-up OCT, mo	22.8±10.4	18.4±4.4	22.0±10.4	22.6±8.9	23.3±10.9	0.1 80
Composite of clinical events	10 (2.9%)	0 (0%)	1 (3.2%)	1 (2.2%)	8 (3.2%)	1.0
Cardiovascular death	1 (0.3%)	0 (0%)	0 (0%)	0 (0%)	1 (0.4%)	1.0
Nonfatal myocardial infarction	1 (0.3%)	0 (0%)	0 (0%)	0 (0%)	1 (0.4%)	1.0
Stent thrombosis	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1.0
Target lesion revascularization	8 (2.3%)	0 (0%)	1 (3.2%)	1 (2.2%)	6 (2.4%)	0.900

Post-procedure OCT & clinical outcome

JACC: CARDIOVASCULAR IMAGING © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 8, NO. 11, 2015 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2015.08.013

Clinical Impact of OCT Findings During PCI

Francesco Prati, MD, PHD,*† Enrico Romagnoli, MD, PHD,† Francesco Burzotta, MD, PHD,‡ Ugo Limbruno, MD,§ Laura Gatto, MD,*† Alessio La Manna, MD,|| Francesco Versaci, MD,¶ Valeria Marco, RN,† Luca Di Vito, MD, PHD,* Fabrizio Imola, MD,* Giulia Paoletti, RN,† Carlo Trani, MD,‡ Corrado Tamburino, MD,|| Luigi Tavazzi, MD,# Gary S. Mintz, MD**

1,002 lesions (832 patients)

J Am Coll Cardiol Img 2015;8:1297–305

OCT criteria of suboptimal stent implantation

J Am Coll Cardiol Img 2015;8:1297–305

Suboptimal OCT findings

	All Lesions (N = 984)	Lesion With MACE (n = 125)	Lesion Without MACE ($n = 859$)	p Value
Suboptimal OCT criteria				
Minimum in-stent lumen area <4.5 mm ²	230 (23.4)	51 (40.8)	179 (20.8)	< 0.001
In-stent lumen underexpansion†	233 (23.7)	38 (30.4)	195 (22.7)	0.07
Malapposition $>$ 200 μ m	485 (49.3)	63 (50.4)	422 (49.1)	0.85
Intrastent plaque/thrombus protrusion $>$ 500 μm	289 (29.4)	38 (30.4)	251 (29.2)	0.83
Edge dissection $>$ 200 μ m	125 (12.7)	25 (20.0)	100 (11.6)	0.013
Distal dissection	69 (7.0)	20 (16.0)	49 (5.7)	< 0.001
Proximal dissection	65 (6.6)	8 (6.4)	57 (6.6)	0.92
Reference narrowing‡	74 (7.5)	38 (30.4)	36 (4.2)	< 0.001
Distal narrowing	57 (5.8)	28 (22.4)	29 (3.4)	< 0.001
Proximal narrowing	24 (2.4)	14 (11.2)	10 (1.2)	< 0.001
At least 1 predictive OCT criterions	305 (31.0)	74 (59.2)	231 (26.9)	< 0.001

J Am Coll Cardiol Img 2015;8:1297–305

Suboptimal OCT deployment & clinical outcome

	All Patients	Patients With Suboptimal OCT Deployment*	Patients With Optimal OCT Deployment		
	(N=832)	(n = 254)	(n = 578)	HR (95% CI)	p Value
MACE	105 (12.6)	64 (25.2)	41 (7.1)	4.41 (2.9-6.8)	0.001
Death	24 (2.9)	11 (4.3)	13 (2.2)	1.97 (0.9-4.5)	0.104
Myocardial infarction	64 (7.7)	42 (16.5)	22 (3.8)	5.01 (2.9-8.6)	0.001
Periprocedural	22 (2.6)	11 (4.3)	11 (1.9)	2.33 (1.0-5.5)	0.050
During follow-up	42 (5.1)	31 (12.2)	11 (1.9)	7.17 (3.5-14.5)	0.001
Target lesion revascularization	56 (6.7)	42 (16.5)	14 (2.4)	7.98 (4.3-14.9)	0.001
Stent thrombosis	30 (3.6)	26 (10.2)	4 (0.7)	16.36 (5.6-47.4)	0.001
Days of follow-up	319 (123-576)	312 (118-584)	324 (129-575)	1200	0.536

*Either in-stent minimum lumen area <4.5 mm2, dissection >200 mm at the distal stent edge, or distal or proximal reference narrowing

Survival free of MACE according to optimal versus nonoptimal stent

*Either in-stent minimum lumen area <4.5 mm2, dissection >200 mm at the distal stent edge, or distal or proximal reference narrowing

Chest pain at exertion Aggravation, 1 week ago

Case 1: M/61

Hypertension (+) Dyslipidemia (+)

Stenting at pLAD

Balloon angioplasty

Stenting

Coronary angiography after stenting

Oops... by final OCT

9 months later

ILUMIEN III: Optimize PCI

Scope: Up to 35 sites (US, EMEA, Japan) 420 randomized subjects Endpoint: Safety/Efficacy Study Primary Efficacy Endpoint (powered). : Post-PCI MSA assessed by OCT in each randomized arm

CAN A

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

OPtical Frequency Domain Imaging vs. INtravascular Ultrasound in Percutaneous Coronary InterventiON (OPINION)

This study is ongoing, but not recruiting participants.

Sponsor: Translational Research Informatics Center, Kobe, Hyogo, Japan

Collaborator: Wakayama Medical University

Information provided by (Responsible Party): Translational Research Informatics Center, Kobe, Hyogo, Japan

Primary Outcome Measures:

Target Vessel Failure (TVF) [Time Frame: 12 months after PCI] [Designated as safety issue: Yes]

The composite endpoint comprised of cardiac death, target vessel-related myocardial infarction (MI) and clinically-driven target vessel revascularization (TVR)

Enrollment:	829
Study Start Date:	June 2013
Estimated Study Completion Date:	December 2015
Estimated Primary Completion Date:	December 2015 (Final data collection date for primary outcome measure)

ClinicalTrials.gov Identifier: NCT01873027

First received: May 26, 2013 Last updated: August 11, 2014 Last verified: August 2014 History of Changes

Take Home Messages

- OCT allow high-resolution images of pre-, peri- and post-procedure, so we can assess lesion characteristics, stent optimization, and procedure complications with it.
- Abnormal post-stent OCT findings are frequent.
- Procedural strategy has been influenced by OCT findings of both pre-PCI and post-PCI in the majority of patients.
- The potential impact of OCT guidance to optimize PCI outcome seems promising and requires further investigations in large-scale prospective trials.

