OCT Assessment of Stent Failure

Jung-Sun Kim, MD, Ph D

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine

The author have no financial conflicts of interest to disclose concerning the presentation.

Recent ESC Guideline

Restenosis			
Repeat PCI is recommended, if technically feasible.	1	С	
DES are recommended for the treatment of in-stent re-stenosis (within BMS or DES).			
Drug-coated balloons are recommended for the treatment of in-stent restenosis (within BMS or DES).			
IVUS and/or OCT should be considered to detect stent-related mechanical problems			
Stant thromhogic			
Stent thrombosis			
Emergency PCI is recommended to restore stent and vessel patency and myocardial reperfusion.	1	С	
Emergency PCI is recommended to restore stent and vessel patency and myocardial reperfusion. DAPT with use of potent P2Y ₁₂ inhibitors (prasugrel or ticagrelor) is recommended over clopidogrel	1	C C	
Emergency PCI is recommended to restore stent and vessel patency and myocardial reperfusion. DAPT with use of potent P2Y ₁₂ inhibitors (prasugrel or ticagrelor) is recommended over clopidogrel Adjunctive thrombus aspiration and high-pressure balloon dilation should be considered.	l I Ila	C C C	

2014 ESC/EACTS/EAPCI guidelines for myocardial revascularization

Windecker S, et al. Eur Heart J 2014

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

The Role of OCT to Assess a <u>Stent</u> <u>Thrombosis</u>

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

The Role of OCT to Assess a <u>Stent</u> <u>Thrombosis</u>

Severance Cardiovascular Hospital

In-Stent Restenosis

PCI at dRCA (Cypher 3.5 x 18mm) 18 month ago

PCI with stent at dLCx (BMS 3.0x30) 10 years ago

Agenda

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

<u>Quantitative evaluation for degree of stenosis</u> <u>with higher resolution</u>

What can get more information with

OCT than IVUS ?

OCT Can Provide Qualitative Information of Neointima

OCT Can Provide Qualitative Information of Neointima

Abnormal Neointima

Text Book; Cardiovascular OCT Imaging: Late stent change, Kim JS, Hong MK, Jang Y

Severance Cardiovascular Hospital

Representative images of OCT and histologic sections.

(A) **Homogeneous** neointimal pattern in OCT has a collagen rich neointima (bluish color) (B) **heterogeneous** neointimal pattern shows lots of loose connective tissue (grey color) and fibrin (pink color) (C) **layered neointimal** pattern shows thick neointima, external elastic laminal rupture and peristrut inflammation (D) **neovascularization** is shown in the middle of neointima.

Kim JS, Granada JF, et al. Eur Heart J Cardiovasc Imaging 2013

Neointimal tissue of In-stent Restenosis

Restenotic tissue structure This study demonstrated that the incidence of heterogeneous neointima in patients presenting with stable angina was 6.7% (1/15) versus 40.0 % (4/10) in patients with unstable angina. show focal variations in backscattering patterns optical properties: an adluminal high scattering layer

	A	_		
	Diffuse (n = 9)	Focal (n = 11)	Margin (n = 5)	р
Layered	7 (77.8%)	5 (45.5%)	1 (20%)	0.005
Homogeneous	2 (22.2%)	1 (9.1%)	4 (80%)	
Heterogeneous	0	5 (45.5%)	0	

Gonzalo N, et al. Am Heart J 2009;158:284-93

Kim JS, Lee JH, Hong MK, et al. J Am Coll Cardiol Imag 2014

Agenda

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

Can Provide Further Information to Guide a

Treatment Option for ISR ?

ISR Treatment with DEB

Follow up angiogram d/t chest discomfort
 →PTCA c DEB at dRCA (Sequent please 3.5 x 15)

ISR Treatment with DEB

DEB 3.0 x 30 mm

Final angiography and OCT

Severance Cardiovascular Hospital

Possible direction for OCT-based ISR treatment strategies

Immediate results after POBA

Layered and heterogeneous tissues might respond better than homogeneous tissue to simple balloon dilatation

Nagoshi R, et al. Cir J 2013;3:652-660

Associations between Restenotic Pattern and mid-term results

produce	nomo	incleio	Layered
POBA vs. PCB	<0.001	0.438	0.027
POBA vs. DES	0.002	1.000	0.002
PCB vs. DES	1.000	0.303	0.417

p value	Homo	Hetero	Layered	
POBA vs. PCB	<0.001	0.688	0.102	
POBA vs. DES	0.005	1.000	0.022	
PCB vs. DES	1.000	0.316	0.394	

Tada T, et al. Eur Hear J Cardiovasc Img 2015;16:1101-11

Summary for In-Stent Restenosis

What can get more information with OCT than IVUS ?

OCT clearly differentiate the tissue

characteristics of neotintima.

assess the mechanism

predict the clinical outcomes

suggest the best treatment option

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

The Role of OCT to Assess a <u>Stent</u> <u>Thrombosis</u>

Stent Thrombosis

 PCI at dRCA (Nobori 3.5 x 18mm) 24 month ago

PCI with stent at dLCx (BMS 3.0x15) 11 years ago

Agenda

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

Quantitative evaluation for relationship

between stent and vessel wall

JACC: CARDIOVASCULAR INTERVENTIONS © 2012 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

Stent Coverage

CLINICAL RESEARCH

Examination of the In Vivo Mechanisms of Late Drug-Eluting Stent Thrombosis

Findings From Optical Coherence Tomography and Intravascular Ultrasound Imaging

Giulio Guagliumi, MD,* Vasile Sirbu, MD,* Giuseppe Musumeci, MD,* Robert Gerber, MD,† Giuseppe Biondi-Zoccai, MD,* Hideyuki Ikejima, MD,* Elena Ladich, MD,‡ Nikoloz Lortkipanidze, MD,* Aleksandre Matiashvili, MD,* Orazio Valsecchi, MD,* Renu Virmani, MD,‡ Gregg W. Stone, MD§

Bergamo, Italy; London, United Kingdom; Gaithersburg, Maryland; and New York, New York

Variable	OR (95% CI)	p Value
Maximum length of segments with uncovered struts at OCT, mm	2.45 (1.27–4.73)	0.007
Remodeling index at IVUS*	1.05 (1.01–1.11)	0.019

Only the 2 covariates with strongest association at univariate analysis were included in the model, given the limited number of cases. *Per 0.01-increase.

CI = confidence interval; IVUS = intravascular ultrasound; OCT = optimal coherence tomography; OR = odds ratio.

ORIGINAL PAPER

Stent Coverage

Optical coherence tomography findings of very late stent thrombosis after drug-eluting stent implantation

Young-Guk Ko · Dong-Min Kim · Jin Man Cho · So Yeon Choi · Jung Han Yoon · Jung-Sun Kim · Byeong-Keuk Kim · Donghoon Choi · Yangsoo Jang · Myeong-Ki Hong

Four (22.2%) of 18 patients with VLST had ruptured and lipid-laden neointima inside DESs *without uncovered or malapposed stent struts.*

In the remaining 14 patients who developed VLST *without*

neointimal rupture, uncovered (64.2 %) and malapposed struts

(50%) were observed in nine and seven patients.

Stent malapposition and incomplete coverage

Stent malapposition and incomplete coverage

Agenda

The Role of OCT to Assess an <u>In-Stent</u> <u>Restenosis</u>

Qualitative Evaluation for Neointimal

Characteristics

Severance Cardiovascular Hospital

Neoatherosclerosis

MGH OCT Registry by IK Jang

(A) Lipid-laden intima, appearing as a signal-poor region with diffuse borders (asterisks), with disruption of the fibrous cap (arrow). (B) In-stent calcification: signal-poor area with sharp borders

Vergallo R, et al. Am J Cardiol 2013;112:1315-21

ORIGINAL PAPER

Neoatherosclerosis

Optical coherence tomography findings of very late stent thrombosis after drug-eluting stent implantation

Young-Guk Ko · Dong-Min Kim · Jin Man Cho · So Yeon Choi · Jung Han Yoon · Jung-Sun Kim · Byeong-Keuk Kim · Donghoon Choi · Yangsoo Jang · Myeong-Ki Hong

Four (22.2%) of 18 patients with VLST had ruptured and lipid-laden neointima inside DESs *without uncovered or malapposed stent struts.*

In the remaining 14 patients who developed VLST *without neointimal rupture*, **uncovered** and malapposed struts were observed in nine and seven patients.

Prevalence of neoatherosclerosis

Otsuka F, et al. Eur Heart J 2015;36:2147–2159

Neoatherosclerosis

Yonsei University College of Medicine

0

mm

Agenda

The Role of OCT to Assess an <u>Stent</u> <u>Thrombosis</u>

Can Provide Further Information to Guide a

Treatment Strategy for Stent Thrombosis ?

Stent Malapposition

NC balloon 4.0 x 15 mm

Final angiography and OCT

Neoatherosclerosis

Xience Prime 3.0*38mm

OCT after stenting

Summary for Stent Thrombosis

What can get more information with **OCT** than IVUS ?

OCT clearly show the relationship between

stent and vessel wall and the tissue

characteristics of neotintima.

Assess the mechanism

Suggest the best treatment strategy

Thanks for your Attention

Severance Cardiovascular Hospital

OCT after thrombosuction

Prevalence of Heterogeneous Neointima & Neoatherosclerosis

Prevalence 20-30 % according to clinical population of patients, stent age or definition of each study

Duration	8-9 Months	9 Months	22 Months (median)	24 Months	7 Months (median)	12 Months (median)	<9 Months
Type of DES	1 st & 2 nd Generation	1 st & 2 nd Generation	1 st & 2 nd Generation	1 st & 2 nd Generation	2 nd Generation	1 st Generation	1 st & 2 nd Generation
Type of Study	OCT	OCT	OCT	ОСТ	Histology	Histology	OCT
Definition of Neoathero- sclerosis or OCT Heterogeneous Pattern	Heterogeneous neointima, focally changing optical properties and various backscattering patterns	Lipid laden neointima	Lipid laden neointima calcification, or TCFA	Lipid laden neointima	Clusters of foamy macrophages within the neointima with/without necrotic core formation	Clusters of foamy macrophages within the neointima with/without necrotic core formation	Lipid laden neointima
Type of Lesion	Percent NIH CSA 18.8%	Percent NIH CSA 18.7±11.3%	>50 stenosis	Percent NIH CSA 23.4±14.5%	Autopsy	Autopsy	Stable AP (73%) & NSTEMI (27%)
Published Year	2014	2012	2013	2012	2013	2011	2012
Reference	Kim et al. (9)	Kim at al. (8)	Lee et al. (12)	Kim et al. (8)	Otsuka et al. (10)	Nakazawa et al. (4)	Yonetsu et al. (11)

Kenichi S, Virmani R, et al. J Am Coll Cardiol Img 2014

Pathology: neoatherosclerosis

PES (14 months)

SES (23 months)

3MS (96 months)

Neoatherosclerosis

- peristrut foamy macrophage cluster
- fibroatheroma
- thin-cap fibroatheroma
- rupture with thrombosis

The Pathology of Neoatherosclerosis in Human Coronary Implants : Bare-Metal and Drug-Eluting Stents

Nakazawa G, et al, JACC, 2011;57:1314-1322

Identification of Intrastent Pathology Associated With Late Stent Thrombosis Using Optical Coherence Tomography

Jones CR, et al J Interven Cardiol 2015:28;439-448

Statin may prevent the degeneration of neointima

Optimal LDL treatment

Conventional treatment

(A) There were **no changes in homogeneous** neointimal characteristics in the optimal lipid-lowering group. (B) Changes from the non-homogeneous to homogeneous neointima were observed in the optimal lipid-lowering group. (C) Changes from the homogeneous to non-homogeneous neointima were observed in the conventional group. (D) There were **no changes in non-homogeneous** neointimal characteristics in the conventional group

Jang JY, Kim JS, Hong MK, et al. Atherosclerosis 2015

Heterogeneous Pattern of Neointima

loose tissue containing
scattered short spindle cells
in the myxoid stroma on
pathologic examination

Cho SS, et al Circulation 2015

Mechanism of DES ISR

Intimal Hyperplasia: General Mechanism of ISR after DES

Kang SJ, et al. Cir Cardiovasc Interv 2011;4:9-14

