Novel Non-invasive Indices to Define Hemodynamic Forces Acting on Coronary Plaque

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Seoul National University Hospital Cardiovascular Center

Why does the plaque rupture? :Mechanism of material failure

Durability = Vulnerability

Information on external hemodynamic force in addition to vulnerability can lead to better discrimination of the risk of plaque rupture.

External force

How to calculate or measure forces acting on the plaque?

SNUH[®] Seoul National University Hospital Cardiovascular Center

Non-invasive hemodynamic force measurement using computational fluid dynamics and cCTA

Non-invasive assessment for regional distribution of hemodynamic forces: WSS and Pressure

SNUH Seoul National University Hospital Cardiovascular Center

WSS and pressure, are they enough?

Wall shear stress (magnitude scaled by 10)

Tanaka, et al. Eur Heart J 2008;29:38-44

Pressure, FFR and WSS are high at the <u>upstream segment</u> of a plaque. Therefore, these parameters cannot explain the occurrence of <u>downstream</u> <u>rupture</u>.

Pressure and WSS, then what else?

Traction is the total force acting on vessel wall, and can be decomposed

In relation to lumen surface: $\|\mathbf{Traction}\|^2 = \|\mathbf{WSS}\|^2 + \|\mathbf{Pressure}\|^2$

In relation to centerline: $\|\mathbf{Traction}\|^2 = \|\mathbf{Axial Stress}\|^2 + \|\mathbf{Radial Stress}\|^2$

Pagiatakis C, et al. Med Biol Eng Comput 2015

Novel hemodynamic index: Axial Plaque Stress

- **Axial plaque stress** uniquely characterizes the diseased segment of both upstream and downstream.
- Axial plaque stress is much higher than wall shear stress.

Distribution of Axial plaque stress

Idealized stenosis models (n=264)

Distribution of axial plaque stress is similar between idealized models and patients lesions.

Lesion geometry vs. Hemodynamic forces

Seoul National University Hospital SNUH Cardiovascular Center

Distribution of Axial Plaque Stress in patients

SNUH Seoul National University Hospital Cardiovascular Center

Novel geometric index: Radius Gradient

Radius Gradient: radius change over segmental lesion length

RG-derived lesion definition Upstream-dominant vs. Downstream-dominant lesions (n=114) Upstream Dominant RGupstream > RGdownstream Downstream Dominant RGupstream < RGdownstream **FFR** % Diameter stenosis 60% 0.2 **Radius Gradient** 40% 0.1 20% 0 0% Downstream Upstream **Axial Plaque Stress** 2000 15000 Wall Shear Stress P<0.001 P<0.001₋ APS [dyne/cm²] 12000 1500 9000 1000 6000 500 3000 0 0 Upstream Downstream Upstream Downstream

RG-derived lesion definition can provide additional information which conventional lesion definitions cannot provide.

1

0.8

0.6

0.4 0.2

0

WSS [dyne/cm²]

Influence of RG on hemodynamic parameters

: Segmental comparison in patients' lesions (n=114)

	Upstream-dominant stenosis (N=56)			Downstream-dominant stenosis (N=58)		
	Upstream	Downstream	p value	Upstream	Downstream	p value
Radius gradient	0.11 ± 0.05	0.06 ± 0.03	<0.001	0.07 ± 0.03	0.12 ± 0.05	<0.001
∆Pressure, mmHg	9.8 ± 8.8	0.2 ± 2.3	<0.001	11.5 ± 8.6	0.7 ± 1.2	<0.001
∆FFR _{ct}	0.10 ± 0.09	0.002 ± 0.02	<0.001	0.12 ± 0.09	0.01 ± 0.01	<0.001
WSS, dyne/cm²	273 ± 181	147 ± 92	<0.001	271 ± 124	154 ± 105	<0.001
APS, dyne/cm ²	11372 ± 5575	6878 ± 4320	<0.001	7681 ± 4557	11991 ± 5557	<0.001

FFR_{CT}, coronary CT angiography-derived FFR; WSS, wall shear stress, APS, axial plaque stress .

Lesion geometry vs. Rupture location: IVUS study

Lee JM...Koo BK. Under review

Comparison of Radius Gradient and Rupture Locations

Lee JM...Koo BK. Under review

Influence of lesion severity on APS

Lee JM...Koo BK. JACC imaging 2015

SNUH Seoul National University Hospital Cardiovascular Center

Influence of lesion severity on APS

- Upstream APS has linear relationship with stenosis severity.
- Downstream APS has a dual response to lesion severity.
- Downstream rupture may occur in less severe stenosis and its clinical consequence can be less severe than upstream rupture.

Clinical Presentations According to Longitudinal Lesion Geometry

APS, RG and Future Event

2011-04 CT, Asymptomatic

2012-06 Acute MI

APS, RG and Future Event

2011-04 CT, Asymptomatic

	RG	APS
Upstream	0.14	9960 dyne/cm²
Downstream	0.05	1740 dyne/cm ²

Conclusion

- Hemodynamic forces acting on the plaque contributes to plaque rupture and can be measured non-invasively using coronary CT angiography and computational fluid dynamics.
- Axial plaque stress and radius gradient uniquely characterizes the stenotic segment and can provide additional information on the risk of plaque rupture.
- Clinical application of these novel indices can be helpful to better assess the future risk and to determine the treatment strategy for patients with coronary artery disease.

