Put It Altogether: What and Why Do We Need More?

Gary S. Mintz, MD Cardiovascular Research Foundation

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- Volcano, Boston Scientific, InfraReDx, St Jude
- Volcano, Boston Scientific, ACIST, Abbott, St Jude

Modalities

- FFR
- IVUS
- RF-IVUS (VH-IVUS, iMAP, or IB-IVUS)
- OCT
- Spectroscopy
- Some combination of the above

Clinical questions

- Is this lesion flow-limiting?
 - Non-LMCA
 - LMCA
- Pre-intervention lesion assessment (ie., what is the culprit?)
- Is this "other" lesion a vulnerable plaque that is at risk for future events?
- What is the likelihood of embolization during stent implantation?
- How do I optimize acute stent results (size, length, expansion, edge coverage)?
 - Is this jailed sidebranch significant?
- Why did this stent thrombose or restenose?

Randomized FFR Trials in Non-LMCA Lesions

- DEFER showed that it was safe to defer PCI in lesions with an FFR >0.75
 - Bech et al. Circulation 2001;103:2928-34
 - Pijls et al. J am Coll Cardiol 2007;49:2105-11
- FAME-I showed that treating lesions with an FFR >0.80 with first generation DES was harmful and that a deferred PCI strategy was safer and cost-saving
 - Tonino et al. N Engl J Med. 2009;360:213-24
 - Pijls et al. J am Coll Cardiol 2010;56:177-84
 - Fearon et al. Circulation 2010;122:2545-50
- FAME-II showed that deferring PCI in lesions with an FFR <0.80 was harmful compared to optimal medical therapy. While more expensive at the beginning, the cost of this strategy decreased by 50% at 1 year. In addition, FAME-II confirmed the findings of DEFER
 - De Bruyne et al. N Engl J Med 2012;367:991-1001
 - Fearon et al. Circulation 2013;17:1335-40
 - De Bruyne et al. N Engl J Med 2014;371:1208-17

Effect of Intravascular Ultrasound-Guided vs. Angiography-Guided Everolimus-Eluting Stent Implantation: the IVUS-XPL Randomized Clinical Trial

Myeong-Ki Hong, MD. PhD on behalf of the IVUS-XPL trial investigators

Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea

Hong et al. JAMA 2015, in press

Primary End Point – Intention to Treat Analysis

	IVUS- guidance (n=700)	Angio- guidance (n=700)	Log- Rank <i>P</i> value
X-over	22 (3.1%)	30 (4.3%)	
MACE	19 (2.9%)	39 (5.8%)	.007
Cardiac death	3 (0.4%)	5 (0.7%)	.48
МІ	0	1 (0.1%)	.32
TLR	17 (2.5%)	33 (5.0%)	.02
ST	2 (0.3%)	2 (0.3%)	1.00

Hong et al. JAMA 2015, in press

Primary End Point in IVUS Guidance

Hong et al. JAMA 2015, in press

Modalities

- FFR
- IVUS
- RF-IVUS (VH-IVUS, iMAP, or IB-IVUS)
- OCT
- Spectroscopy
- Some combination of the above

Clinical questions

- Is this lesion flow-limiting?
 - Non-LMCA
 - LMCA
- Pre-intervention lesion assessment (ie., what is the culprit?)
- Is this "other" lesion a vulnerable plaque that is at risk for future events?
- What is the likelihood of embolization during stent implantation?
- How do I optimize acute stent results (size, length, expansion, edge coverage)?
 - Is this jailed sidebranch significant?
- Why did this stent thrombose or restenose?

Modalities

- FFR
- IVUS
- RF-IVUS (VH-IVUS, iMAP, or IB-IVUS)
- OCT
- Spectroscopy
- Some combination of the above

Clinical questions

- Is this lesion flow-limiting?
 - Non-LMCA
 - LMCA
- Pre-intervention lesion assessment (ie., what is the culprit?)
- The common denominator is a fibroatheroma, in particular a TCFA
- How do I optimize acute stent results (size, length, expansion, edge coverage)?
 - Is this jailed sidebranch significant?
- Why did this stent thrombose or restenose?

"Validation" of intravascular imaging detection of TCFAs or Plaque Ruptures

	Grayscale IVUS	Grayscale + VH-IVUS	Grayscale + IB-IVUS	OCT	NIRS - IVUS	Angioscopy
Consistent with histology	+	+	+	+	+	+
Direct comparison with histology	+	+	+	+	+	+
Findings in ACS vs stable pts	+	+	+	+	+	+
Predictive of events						
Patient level	+	+			+	+
Lesion level	Retrospective	Prospective		Retrospective		

"Validation" of intravascular imaging detection of Plaque Erosions

	Grayscale IVUS	Grayscale + VH-IVUS*	Grayscale + IB-IVUS	OCT	NIRS - IVUS	Angioscopy
Consistent with histology				+		
Direct comparison with histology						
Findings in ACS vs stable pts				+		+
Predictive of events						
Patient level						
Lesion level						

PROSPECT: Multivariable Correlates of Non Culprit Lesion Related Events

Variable	HR [95% CI]	р
Plaque burden _{MLA} ≥70%	5.03 [2.51, 10.11]	<0.0001
VH-TCFA	3.35 [1.77, 6.36]	0.0002
MLA ≤4.0 mm²	3.21 [1.61, 6.42]	0.001

Stone et al. N Engl J Med 2011;361:226-35 OCRF

Stone et al. N Engl J Med 2011;361:226-35

VIVA: VH-IVUS in Vulnerable Atherosclerosis

167 pts with stable CAD or ACS underwent 3-vessel VH-IVUS imaging; 1,096 plaques were classified; median follow-up 625 days 18 MACE (death [2], MI [2] or revasc [14]) occurred in 16 pts from 19 lesions (13 nonculprit lesions and 6 culprit lesions)

Univariate predictors of non-culprit MACE

Calvert et al. JACC Cardiovasc Imaging 2011;4:894-901

ATHEROREMO-IVUS

1 non-culprit artery imaged in 581 pts (stable CAD or ACS) LAD>RCA>LCX

- VH-TCFAs with a plaque burden ≥70% were associated with a higher MACE rate both in the first 6 months (P=0.011) and after 6 months (P<0.001)
- VH-TCFAs with a plaque burden <70% were only associated with a higher MACE rate after 6 months (P=0.033)

Cheng et al. Eur Heart J 2014;35:639-47

Limitations

- Resolution: approximately 200µ for 20MHz synthetic aperture array
- Requires accurate contours of lumen and adventitia (EEM)
- Wire artifact and masking
- No validation for stent metal that appears as "calcium" surrounded by "necrotic core" even when implanted acutely
- No validation for intimal hyperplasia
- No validation for thrombus that appears as fibrous or fibrofatty. As a result.
 - A thrombus-containing lesion may be classified as PIT or fibrotic plaque – stable - rather than unstable
 - Superficial thrombus may cause a VH-TCFA to be classified as a ThFCA
 - In all probability an algorithm for thrombus will not be possible since the IVUS signal changes with the "age" of the thrombus
- Accuracy behind calcium where the grayscale IVUS image shows shadowing

Interobserver variability in VH-IVUS phenotype diagnosis

		Observer #1					
		PIT	Fibrocalcific	ThCFA	TCFA	Total	Histology
2	PIT	62	0	1	0	63	60
er #	Fibrocalcific	1	13	0	0	14	32
erve	ThCFA	2	4	15	1	22	45
bsd	TCFA	2	9	5	42	58	22
-0	Total	67	26	21	43	212	
	Histology	60	32	45	22		

The greatest difficulty was to differentiate between a fibroatheroma that is was a VH-TCFA vs a ThFCA

Brown et al. Circ Cardiovasc Imaging. 2015;8:e002518

VH-TCFA vs ThFCA

In vitro comparison of IB-IVUS With VH-IVUS in 392 histologic sections from 46 coronary arteries

The agreement between histology and IB-IVUS was higher (kappa=0.81) than between the histology and IVUS-VH (kappa=0.66)

Okubo et al. Circulation J 2008;72:1631-9

Angioscopy vs VH-IVUS TCFA in 57 culprit lesions in 57 pts

VH -	Angioscopy			
IVUS	+	-		
+	17 (30%)	8 (14%)		
	6 (11%)	26 (46%)		

Yamamoto et al. Circulation J 2009;73:497-502

VH-IVUS (+) and OCT (-)

VH-IVUS (-) and OCT (+)

VH-IVUS (+) and OCT (+)

OCT vs VH-IVUS TCFA in 126 lesions in 56 pts

VH -	ОСТ				
IVUS	+	-			
+	28 (22%)	33 (26%)			
	8 (6%)	57 (45%)			

Sawada et al. Eur Heart J 2008;29:1136-46

Infraredx: Combined NIRS - Next Generation IVUS

Spectral differences can be used to distinguish LCP with thin fibrous cap (less collagen) from LCP with thicker fibrous cap (more collagen)

Madden et al. J Am Coll Cardiol 2012;59:E308

Ability to Predict Thin Cap (<0.065mm)

OCT has been proposed as the gold standard to detect a TCFA, but...

	Positive Predictive Value					
	Histology	/ (#)	OCT	IVUS	RF-IVUS	OCT+IVUS
Brown et al. Circ Cardiovasc Imaging, in press	22		31%		26%	50%
Nakano et al. JACC Cardiovasc Imaging, in press	18		31%		14%	100%
Fujii et al. JACC Cardiovasc Imaging 2015;8:451-60	12		41%	19%		69%
	Interobserver correlation coefficient					icient
	FC thickness Mea		s Mear	n lipid arc	Max lipid arc	
Kim et al. JACC Cardiovasc Imaging 2012;5:1072-4	25		0.49	0.71		0.77
Feldman. TCT2015	Of 21 IVOCT TCFAs identified by two independent IVO Core Labs (fibrous cap <65 µm, lipid arc >1 quadrant), 8 were true histologic TCFA. False positive diagnoses for cell infiltration (62%), SMC-rich fibrous tissue (15%), loc connective tissue (8)			pendent IVOCT I quadrant), only diagnoses foam ue (15%), loose		

OCT-NIRS Cadaver Coronary Plaques

Tearney. TCT2013

TCFA detection by IB-IVUS

	TCFA detection
PPV	50.0%
NPV	98.2%
Sensitivity	66.7%
Specificity	96.5%

TCFA detection by OCT + IB-IVUS

	# of sections	# TCFA	Probability (PPV)
Definite TCFA (by OCT and IB-IVUS)	10	10	100%
Probable TCFA (either by OCT or IB-IVUS)	27	6	22%
Neither by OCT and IB-IVUS	323	2	1%

Nakano et al. JACC Cardiovasc Imaging, in press CRF

Structure and "Composition/Function" OCT combined with . . .

- Short wave length infrared (SWIR) to detect lipid
 - Shimokado et al. ESC2015

 Near infrared fluorescence molecular imaging (NIRF) to detect inflammatory plaque cathepsin protease activity and fibrin deposition post-stenting

- Jaffer and Tearney. TCT2015
- Two photon luminescence (TPL) determine lipid, collagen, elastin and calcium due to autofluorescence
 - Feldman. TCT2015

Tearney. TCT2015

Tearney. TCT2015

Heartbeat (micromotor) OCT

5600 rotations per second1.0 mm diameter2.0 mm length

van der Steen. TCT2015

ARDIOVASCULAR SEARCH FOUNDATION the heart of innovation

1.2 mm outer diameter 1.7 mm length

van der Steen. TCT2015

In vivo imaging of LAD

2000 frames, 50 mm

van der Steen. TCT2015

160 times slower

van der Steen. TCT2015

Micro OCT with 1-2 micron resolution

Smooth Muscle Cells

Macrophages

Endothelium

Necrotic Core Cholesterol Crystals

"The short update is that we have finally figured out how to make a µOCT catheter and it works. In the next few months, we will be demonstrating the catheter ex vivo. Hopefully by next year's TCT we will have conducted a first-in-human study and will have our first in vivo images."

-Gary Tearney MD, PhD, October 20, 2015

Tearney. TCT2013

High Resolution (2.1µ) Micro-CT

Maldonaddo et al. Int J Cardiovasc Imaging 2015;31:1079-87

NIH Public Access

I discound, Austral completerer contraste in PARC 2015 Mar

Published in final edited form as:

J Biomech. 2014 March 3; 47(4): 870-877, doi:10.1016/j.jbiomech.2014.01.010.

Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models

Luis Cardoso^{1,2}, Adreanne Kelly-Arnold¹, Natalia Maldonado¹, Damien Laudier¹, and Sheldon Weinbaum^{1,2}

¹Department of Biomedical Engineering, The City College of New York of The City University of New York, New York, USA

The Graduate Center of The City University of New York, New York, NY, USA

Abstract

Approximately half of all cardiovascular deaths associated with acute coronary syndrome occur when the thin fibrous cap tissue overlying the necrotic core in a coronary vessel is tom, ripped or fissured under the action of high blood pressure. From a biomechanics point of view, the raptare of an atheronan is due to increased mechanical stresses in the lesion, in which the ultimate stress (i.e. peak circumferential stress (PCS) at failure) of the tissue is exceeded. Several factors including the cap thickness, morphology, residual stresses, and tissue composition of the atheronan have been shown to affect the PCS. Also important, we recently demonstrated that microcalcifications (μ Calcs) > 5 µm are a common feature in buckan atheroma caps, which behave as local stress concentrators, mereasing the local tissue stress by at level a factor of two surpassing the ultimate stress threshold for cap tissue rupture. In the present study, we used both idealized μ Calcs with spherical shape and actual μ Calcs from human coronary atherosclerotic caps, to determine their effect on increasing the circumferential stress in the fiberoathers.ma cap using different hyperelastic constitutive models. We have found that the stress concentration factor (SCP) produced by μ Calcs in the fibreatheroma cap is affected by the material tissue properties, μ Calcs spacing, aspect ratio and their alignment relative to the tensile axio of the cap.

Keywords

micro computed tomography; vulnerable plaque; microcalcifications; fibrous cap rupture

Conflict of interest

The authors have no coeffict of interest.

Cardoso et al. J Biomech. 2014;47: 870-7 Kelly-Arnold et al. Proc Natl Acad Sci USA. 2013;110:10741-6 **CRF** CARDIOVASCULAR

^{© 2014} Elsevier Ltd. All rights reserved.

Addaws correspondence to: Sheldon Weizbaum, PhD. The City College of The City University of New York, Steinman Hall T-404B, 140¹⁰ Streng and Correct Aver, New York, 10031 USA, 212:650-5302 (Office), 212:650-6727(Fux); Weizbaum Receipt annu Aver, New York, 10031 USA, 212:650-5302 (Office), 212:650-6727(Fux);

Publisher's Disclaimer: This is a PDF file of an usedined manuscript that has been accepted for publication. As a service to our outcomers we are providing thin early version of the manuscript. The manuscript will indergo copyediting, hypesetting, and review of the resulting proof before it is published in its final citable frem. Press one that during the production process aroun may be discovered which could affect the content, and all legal disclosions that apply to the journal periods.

SHARPER IMAGE

BOYS LIKE TUYS

Sharper Image Catalogue. Holiday 2015.

- Outside of Japan and Korea and only isolated centers in the US and Europe, interventionalists look for <u>any excuse not</u> to perform FFR - IVUS (or OCT) even though there is undeniable data that these techniques improve PCI outcomes
- Technologic advancements may be good, but . .
 - There must be a clinical need
 - Images must be easy to interpret and not just by experts or in a core lab setting or at IPS
 - Patient outcomes must be improved (without a major increase in cost)

