Imaging & Physiology Summit

FFR & LONG-TERM OUTCOME: 15 year DEFER, 5 year FAME, and 5 year LAD's

Seoul, Korea, december 3rd, 2015

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

IPS 2015

Potential conflicts of interest

Speaker's name: NICO H J PIJLS

X I have the following potential conflicts of interest to report:

Research contracts : grant support from St Jude Medical
 Consulting: St Jude Medical, Boston Sc, Opsens
 Employment in industry
 Stockholder of a healthcare company: Heartflow, Philips, ASML
 Owner of a healthcare company
 Other(s)

From a patient's point of view, the wind tunnel for any index to be used in clinical medicine, is its influence on outcome

FFR and Clinical Outcome:

<u>3 important questions:</u>

- Is it safe to defer PCI if FFR is negative ?
- Is it indicated to perform PCI if FFR is positive ?
- Does systematic use of FFR improve outcome of PCI ?

Primary objective

To test safety of deferring PCI of non-

ischemic stenosis as indicated by FFR ≥ 0.75

First randomized controlled trial using FFR with longest follow-up ever (17 years)

DEFER study: endpoints

Primary endpoint:

Secondary endpoints:

- MACE at 2 years
- MACE at 5 years
- individual components of MACE at 2 and 5 years
- functional class at 2 and 5 years

15-year follow-up was not a pre-defined endpoint

The DEFER Study: Flow Chart

Outcome

Symptoms

JACC Vol. 49, No. 21, 2007:2105-11

15-year follow-up

Follow-up was achieved as follows:

- Complete follow-up in 92% of all patients
- Follow-up with respect to mortality in 97% of all patients

 Median follow-up of 16.8 years (interquartile range 15.3 -17.3 years)

Zimmermann et al; Europ Heart J 2015 (in press)

Results <u>15-year</u> follow-up

All cumulative events

	Any death	Any MI	Any revascularization
Defer	30 NS	2 7*	60 NS
Perform	28 🔟	13 –	53 🔟
Reference	52	19	86

MORTALITY

	Cardiac	Unknown	Non-cardiac	Total
Defer	5 (5%)	13 (14%)	12 (13%)	30 (33%)
Perform	4 (4%)	11 (12%)	13 (14%)	28 (31%)
Reference	15 (10%)	10 (7%)	27 (19%)	52 (36%)

No statistical differences between groups

Mortality mainly related to advanced age (79 y at last follow-up)*

* In a completely healthy cohort of Dutch patients aged 62 years, expected mortality at 17 years of follow-up, is 28 %

Myocardial infarction

• Significant higher infarct rate in perform group (p < 0.03)

Most infarctions related to target vessel

SUMMARY OF DEFER STUDY

Deferral vs Performance of PCI in non-ischemic stenosis (based upon FFR > 0,75) gives the following very long term (> 15 years) outcome:

- *Mortality*: no difference in mortality
- Myocardial Infarction: significant advantage in favour of Defer Group
- Repeated PCI/CABG: no differences

Is it safe to defer PCI if FFR is negative ? → YES !!!

Risk for death or MI related to functionally non-significant stenosis:

• FAME study : 0.4 % per year (f.u. of 2 years; NEJM 2009

Also with other modalities of investigation, outcome of non-significant lesions is excellent:

- CCTA studies: 0.7 % per year (Min, JACC 2011)
- Prospect study: 0.4 % per year (Stone, NEJM 2011)

FUNCTIONALLY NON-SIGNIFICANT STENOSIS

Stenting a functionally non-significant (FFR-negative) stenosis does NOT make any sense.

> It is unnecessary, expensive, and increases the risk of death and MI without any symptomatic benefit

> > DEFER, FAME, Nuclear; Prospect

FUNCTIONALLY SIGNIFICANT STENOSIS

IF ischemia is present, does (FFR guided) PCI improve outcome ?

Tonino et al: New Engl J Med 2009. Pijls et al: JACC 2011 De Bruyne et al: New Engl J Med 2012 & 2014 Van Nunen et al: The Lancet, 2015 (today)

FFR - guided Percutaneous Coronary Intervention (PCI) in multivessel disease, is superior to angiography - guided PCI

> FAME 1 study; N= 1006 5 - year follow up presented today and published in Lancet today (van Nunen L, Zimmermann F, Tonino P, et al)

PRIMARY ENDPOINT

Composite of death, myocardial infarction, or repeat revascularization ("MACE") at 1 year

SECONDARY ENDPOINTS

"MACE" and its individual components at 2 years and at 5 years

FAME study: Baseline Characteristics (2)

FAME

	ANGIO-group N=496	FFR-group N=509	P-value
# indicated lesions per patient	2.7±0.9	2.8±1.0	0.34
50-70% narrowing, No (%) 70-90% narrowing, No (%) 90-99% narrowing, No (%) Total occlusion, No (%)	550 (41) 553 (41) 207 (15) 40 (3)	624 (44) 530 (37) 202(14) 58 (4)	
Patients with ≥1 total occlusion (%) Patients with prox LAD involved, No (%)	7.5 186 (38) 960 (71)	10.6 210 (41) 1032 (73)	0.08 0.39

FAME study: Procedural Results (1)

	ANGIO-group N=496	FFR-group N=509	P-value
<i># indicated lesions per patient</i>	2.7 ± 0.9	2.8 ± 1.0	0.34
FFR results			
esions succesfully measured, No (%)	-	1329 (98%)	-
Lesions with FFR ≤ 0.80 ,No (%)	-	874 (63%)	-
No (%), Lesions with FFR > 0.80, No	-	513 (37%)	-
Stents per patient	2.7 ± 1.2	1.9 ± 1.3	<0.001
esions succesfully stented (%)	92%	94%	-
DES, total, No	1359	980	-

FAMI

FAME study: Procedural Results (2)

	ANGIO-group N=496	FFR-group N=509	P-value
Procedure time (min)	70 ± 44	71 ± 43	0.51
Contrast agent used (ml)	302 ± 127	272 ± 133	<0.001
Materials used at procedure (US \$)	6007	5332	<0.001
Length of hospital stay (days)	3.7 ± 3.5	3.4 ± 3.3	0.05

Measuring FFR in Multivessel Disease: FAME Study (N=1005) : One Year Outcomes

FAME

Tonino et al: New Engl J Med 2009;360:213-24.

5 year follow-up

Van Nunen LX, Zimmerman F, et al: Lancet 2015; september 1st.

FAME study: cumulative events during 5-year follow-up

FAME

 \bigcirc

FAME study: 5 - year Kaplan Meier survival curves

FAME

FAME study: Some prominent numbers

<u>Absolute</u> Reduction of <u>All-cause</u> Mortality:

at 1 year: 1.2 % at 2 years: 1.2 % at 5 years: 1.3%

Relative Reduction of Cardiac Mortality:

at 1 year:30 %at 2 years:25 %at 5 years:27%

<u>Multivariate Analysis</u> of "<u>Primary Endpoint" at 5 years:</u> despite the lower number of patients at risk, significant decrease of MACE at 5 years in male gender (P=0.027)

FAME study: Conclusions of 5-y Follow-up

- In patients with multivessel disease, FFR-guided PCI compared to angiography-guided PCI results in a significant decrease of adverse events up to 2 years, while thereafter the risk of both groups evolves in parallel
- This clinical benefit is achieved with fewer stents and less resource utilisation.
- This 5-y follow-up confirms the long-term benefit and safety of FFR-guided PCI in patients with multivessel disease

JACC, CARDIOVASCULAR INTERVENTIONS © 3011 BT THE AMERICAN COLLIGE OF CARDIOLOGY FOUNDATION FUELISHED BT ELSEVER INC. VOL. 4. NO. 11. 3011 1338 1938-8798/\$38.00 005 10.1016/j.jets.3011.09.007

EXPEDITED PUBLICATION: CLINICAL RESEARCH

Long-Term Follow-Up After Fractional Flow Reserve–Guided Treatment Strategy in Patients With an Isolated Proximal Left Anterior Descending Coronary Artery Stenosis

Olivier Muller, MD, PHD,* Fabio Mangiacapra, MD,* Argyrios Ntalianis, MD, PHD,* Katia M. C. Verhamme, MD, PHD,† Catalina Trana, MD,* Michalis Hamilos, MD, PHD,* Jozef Bartunek, MD, PHD,* Marc Vanderheyden, MD,* Eric Wyffels, MD,* Guy R. Heyndrickx, MD, PHD,* Frank J. A. van Rooij, DSC,‡ Jacqueline C. M. Witteman, MSC, PHD,‡ Albert Hofman, MD, PHD,‡ William Wijns, MD, PHD,* Emanuele Barbato, MD, PHD,* Bernard De Bruyne, MD, PHD*

Aalst, Belgium; and Rotterdam, the Netherlands

730 patients with proximal LAD stenosis 30-70%, referred for PCI

 $FFR \le 0.80 \rightarrow PCI \text{ or } CABG : N = 166$

 $FFR > 0.80 \rightarrow$ medical treatment, based upon FFR

Follow up for 5 years, 1868 age & sex matched controls without known coronary disease

Proximal LAD Stenoses

Muller O. et al. JACC Interv 2011

Muller O. et al. JACC Interv 2011

Optimal cut-off value evaluation of 'grey zone'

- 1459 patients single-vessel disease
 - isolated de novo stenosis
 - FFR 0.70 0.85
- Categorized as FFR 0.70 0.75
 - FFR 0.76 0.80
 - FFR 0.81 0.85
- Compared revascularization versus medical therapy
- Endpoint was MACE at 5 years

Cardiovascular MACE in medical therapy group

Optimal cut-off value evaluation of 'grey zone'

Adjedj et al. EuroPCR 2015

FFR and Clinical Outcome: <u>3 important questions:</u>

- Is it safe to defer PCI if FFR is negative ? ----> YES !
 (together, in the 3 RCT's DEFER , FAME, and FAME 2
 almost 2000 lesions were non-significant by FFR and
 consequently deferred. In these patients long-term rate of
 death & MI is 0.6 % per year ! (up to 15 years)
- Is it indicated to perform PCI if FFR is positive ?
 YES ! (FAME -2, less events, survival benefit)
- Does systematic use of FFR improve PCI outcome
 YES ! (FAME, persistent superiority of FFR-guided PCI)