
Vulnerable Plaque Imaging: Lessons Learn from PROSPECT, ATHEROREMO, and VIVA

Gary S. Mintz, MD Cardiovascular Research Foundation

The PROSPECT Trial

700 pts with ACS UA (with ECG Δs) or NSTEMI or STEMI >24^o undergoing 1 or 2-vessel PCI followed by 3-vessel imaging

QCA of entire coronary tree

Virtual Histology

IVUS

Proximal 6-8 cm of each coronary artery

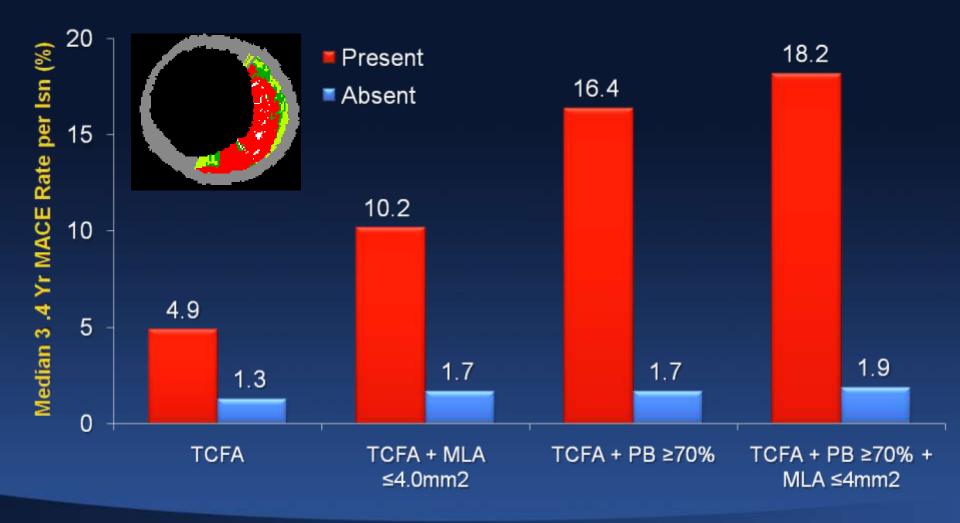
Medications Aspirin Plavix ≥1yr Statins

F/U: Until there were 100 *VP events*

Repeat imaging in patients with events

PROSPECT: Multivariable Correlates of Non Culprit Lesion Related Events

Independent predictors of lesion level events by Cox Proportional Hazards regression


Variable	HR [95% CI)	р
PB _{MLA} ≥70%	5.03 [2.51, 10.11]	<0.0001
VH-TCFA	3.35 [1.77, 6.36]	0.0002
MLA ≤4.0 mm²	3.21 [1.61, 6.42]	0.001

Variables entered into the model: minimal luminal area (MLA) \leq 4.0 mm²; plaque burden at the MLA (PB_{MLA}) \geq 70%; external elastic membrane at the MLA (EEM_{MLA}) <median (14.1 mm²); lesion length \geq median (11.2 mm); distance from ostium to MLA \geq median (30.4 mm); remodeling index \geq median (0.94); VH-TCFA.

Stone et al. N Engl J Med 2011;361:226-35

PROSPECT: Predictors of Non Culprit Lesion Events

Stone et al. N Engl J Med 2011;361:226-35

VIVA: Virtual Histology in Vulnerable Atherosclerosis

 932 non-culprit lesions in 170 pts were identified with 3vessel IVUS imaging

 At a median follow-up of 625 days, there were 18 culprit and non-culprit MACE in 16 pts (14 revascularizations, 2 MIs, and 2 deaths)

<u>Univariate</u> predictors of non-culprit MACE

Non-calcified VH-TCFA (p=0.025)

• MLA <4mm² (p=0.021)

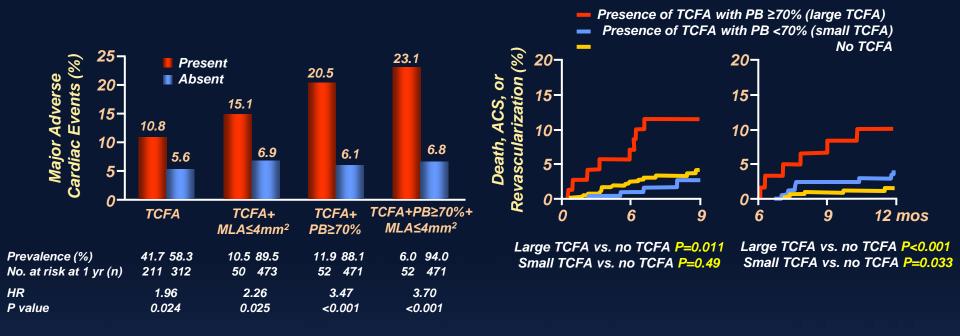
Plaque burden >70% (p<0.001)

Remodeling index (p=0.014)

Calvert et al. JACC Cardiovasc Imaging 2011;4:894-901

European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis – IVUS (ATHEROREMO-IVUS) study

 1 non-culprit artery imaged in 581 pts (stable CAD or ACS): LAD>RCA>LCX

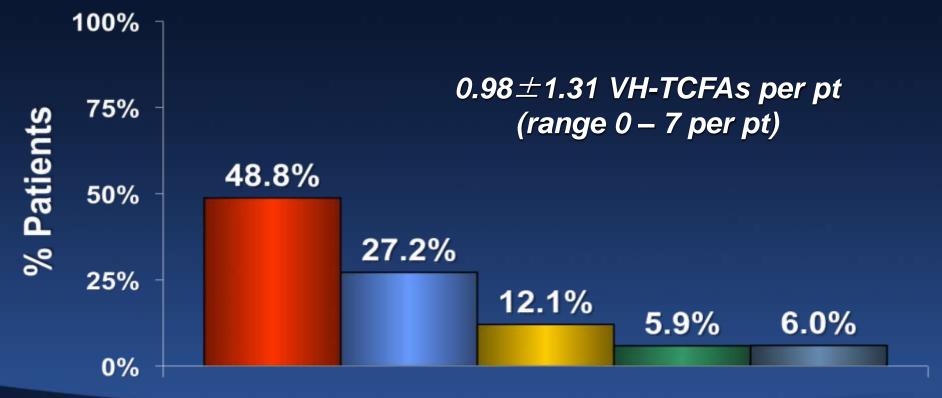

 At 1 year of follow-up, 56 pts had at least 1 event: 4 PCI in pts without baseline PCI, 11 culprit events, 27 non-culprit events, 18 indeterminate events

 18 deaths, 8 from cardiac or unknown causes; 14 ACS (7 MI); 24 unplanned revascularization

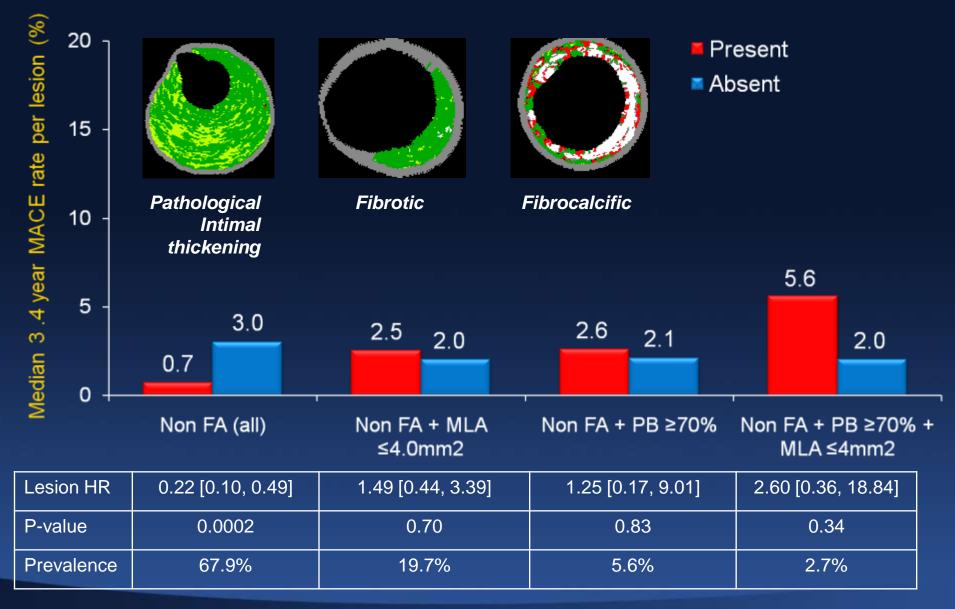
 Presence of VH-TCFA was significantly associated with the composite of Death/ACS (adjusted HR=2.51, p=0.021)

> GCRF CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

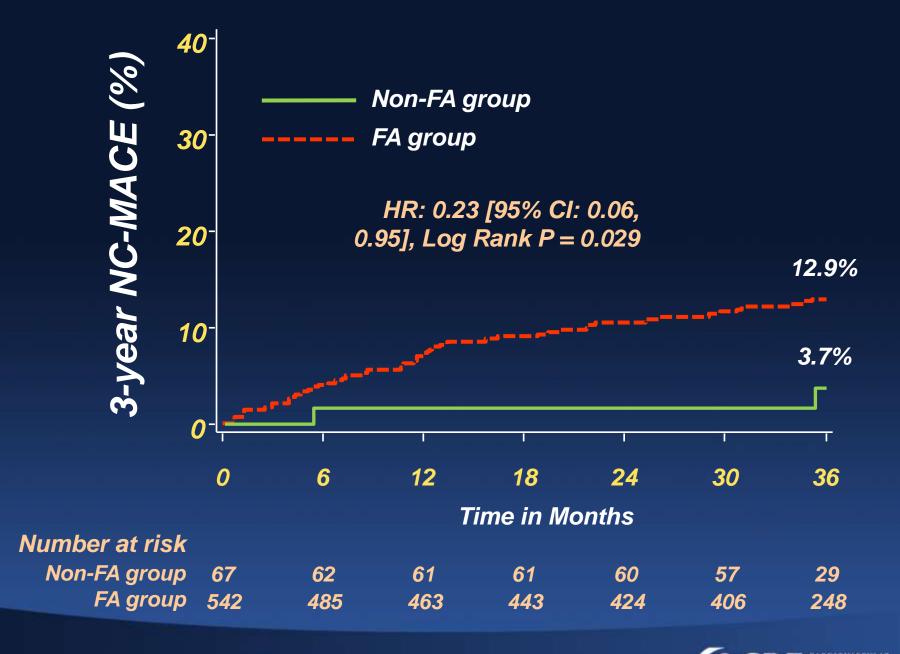
Cheng et al. Eur Heart J 2014;35:639-47


- A VH-TCFA (present 10.8% vs. absent 5.6%; adjusted HR: 1.98, P=0.026) and a plaque burden ≥70% (present 16.2% vs. absent 5.5%; adjusted HR: 2.90, P<0.001), but not an MLA ≤4.0mm², were independently associated with MACE.
- Risk for MACE was further increased if the VH-TCFA had an MLA ≤4.0mm², plaque burden ≥70%, or a combination of these three characteristics
- VH-TCFAs with a plaque burden ≥70% were associated with a higher MACE rate both in the first 6 months (P=0.011) and after 6 months (P<0.001), while smaller TCFA lesions were only associated with a higher MACE rate after 6 months (P=0.033)

Cheng et al. Eur Heart J 2014;35:639-47


PROSPECT: 596 TCFAs were identified in 51.2% of the patients (vs 1005 thick cap fibroatheromas)

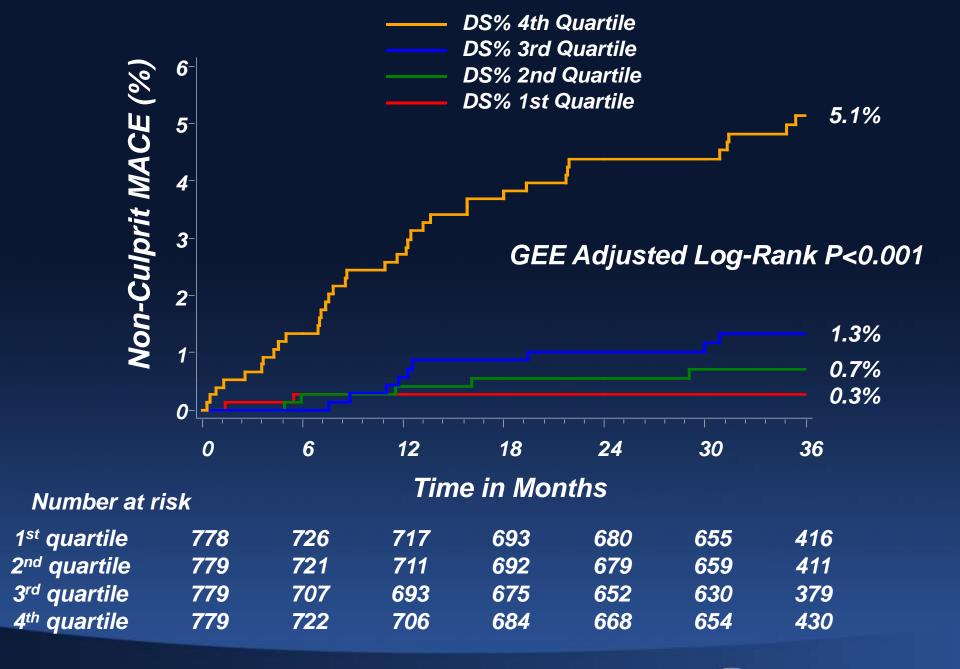
■0 ■1 ■2 ■3 ■≥4


Non Fibroatheromas and Non Culprit Lesion Events

At the heart of innovation

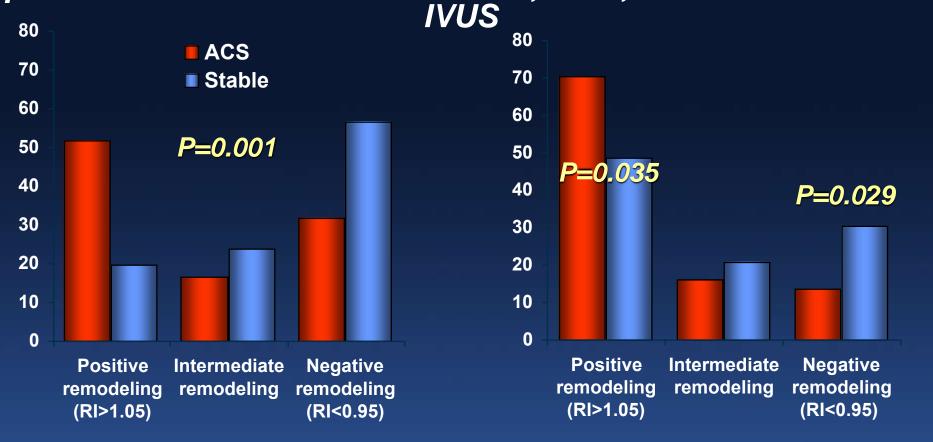
Stone et al. N Engl J Med 2011;361:226-35

Dohi et al. JACC Cardiovasc Imaging 2013;6:908-16


ESEARCH FOUNDATION

PROSPECT: Angiographic severity vs high risk morphology (n=3115)

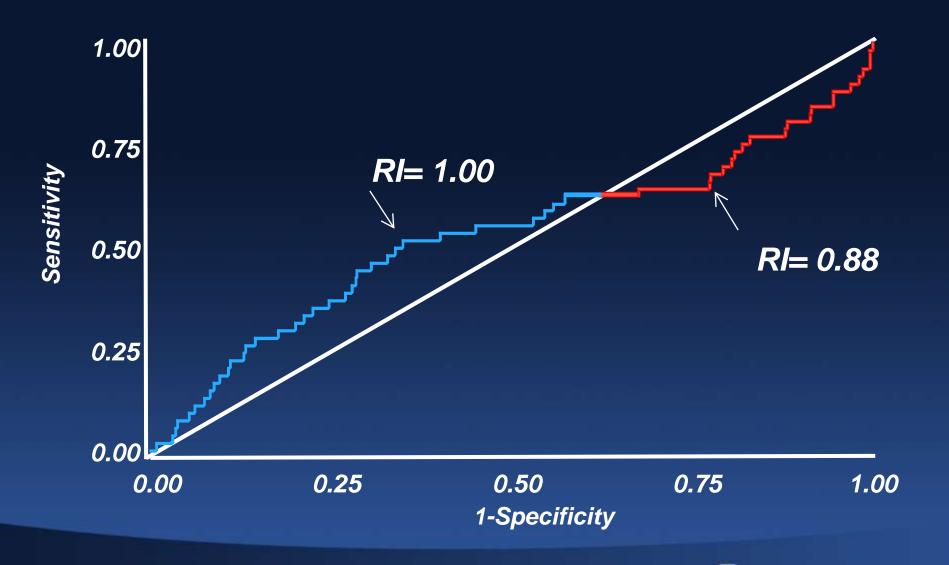
	Quartile			
	1st	2nd	3rd	4th
QCA DS (%)	2.82 (2.56, 3.08)			33.52 (32.90, 34.14)
NC volume, %	12.3 (11.6, 13.0)	12.5 (11.8, 13.2)	13.0 (12.3, 13.7)	14.0 (13.3, 14.7)
VH-TCFA	13.4%	22.0%	24.4%	30.3%
FA	48.6%	56.2%	62.3%	72.3%
# of high risk 100% ⁻ morphologies ■Three 75% ⁻				
Two 50% - One 25% - None				
0% -	1st	2nd	3rd	4th


Yun et al. Am J Cardiol 2012;110:471-7

ARDIOVASCULAR ESEARCH FOUNDATION t the heart of innovation

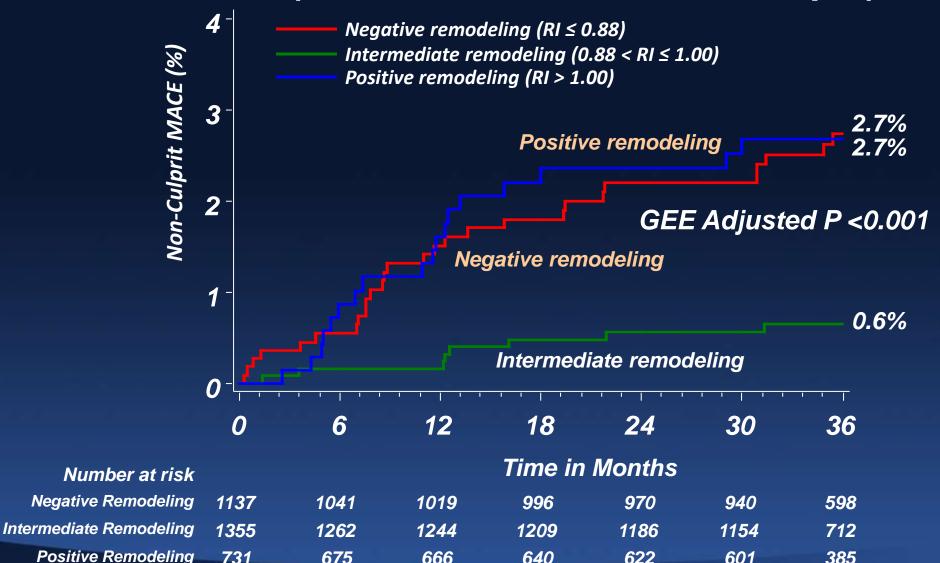
Yun et al. Am J Cardiol 2012;110:471-7 🕥

RDIOVASCULAR SEARCH FOUNDATION the heart of innovation Despite the fact that more than a dozen histopathologic and IVUS studies showed a relationship between positive remodeling and unstable lesion morphology, neither the remodeling index nor positive remodeling were independent predictors of events in PROSPECT, VIVA, or ATHEROREMO-



(Schoenhagen et al. Circulation 2000;101:598-603)

(Prati et al. Circulation 2003;107:2320-5)



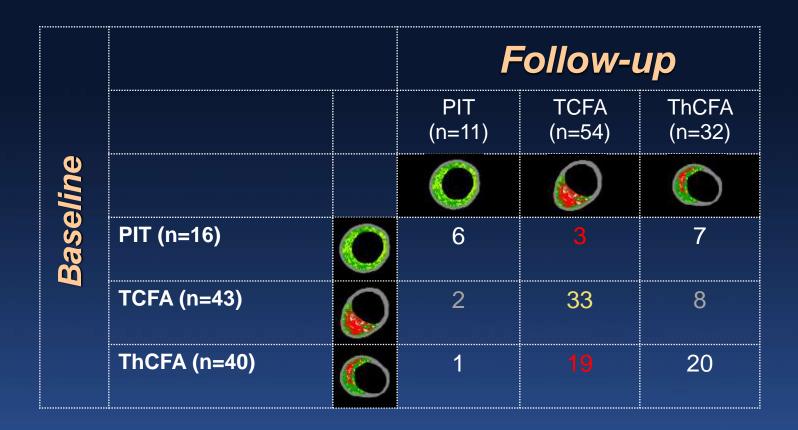
Remodeling index that predicted MACE in PROSPECT (Training set: 1041 lesions in 214 pts)

Inaba et al. JACC Cardiovasc Imaging 2014, 720-8RF

Impact of Positive and Negative Remodeling in PROSPECT (Test set: 2182 lesions is 443 pts)

Inaba et al. JACC Cardiovasc Imaging 2014,720-8K

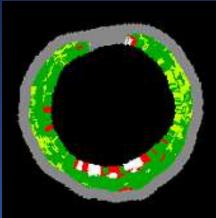
CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation 8-month change in non-culprit lesion phenotype in 106 pts (201 lesions) with stable CAD with plaque burden >40% from the Global VH Registry

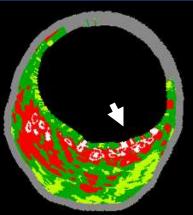

Follow-up

			PIT (n=48)	TCFA (n=17)	ThCFA (n=109)	Fibrotic (n=23)	Fibrcalcific (n=20)
Ð			0		\bigcirc	\bigcirc	\bigcirc
Selln	PIT (n=62)	\bigcirc	44	6	12	0	0
Da S	TCFA (n=20)		0	5	14	2	0
	ThCFA (n=93)	\bigcirc	0	6	83	3	1
	Fibrotic (n=22)	\bigcirc	4	0	0	18	0
	Fibrocalcific (n=19)	\bigcirc	0	0	0	0	19

13-month change in non-culprit lesion phenotype in 100 pts (100 lesions) with plaque burden >40% from the HORIZONS-AMI Trial

Zhao et al. JACC Cardiovasc Imaging 2013;6:86-95 🅥


ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation


BaselineTCFATCFATCFAPITImage: Image: Image:

Follow-up Fibrotic

TCFA

TCFA

PROSPECT: 3-year follow-up hierarchical MACE (assuming indeterminant events are non-culprit lesion related)

	All	Culprit lesion related	Non culprit lesion related
Cardiac death	1.9% (12)	0.2% (1)	1.8% (11)
Cardiac arrest	0.3% (2)	0.3% (2)	0% (0)
MI (STEMI or NSTEMI)	2.7% (17)	1.7% (11)	1.2% (7)
Rehospitalization for unstable or progressive angina	15.4% (101)	10.4% (69)	10.5% (67)
Composite MACE	20.4% (132)	12.9% (83)	13.3% (85)
Cardiac death, arrest or MI	4.9% (31)	2.2% (14)	2.9% (18)

Stone et al. N Engl J Med 2011;361:226-35 OCRF

PROSPECT: 3-year follow-up hierarchical MACE (assuming indeterminant events are non-culprit lesion related)

	All	Culprit lesion related	Non culprit lesion related
Cardiac death	1.9% (12)	0.2% (1)	1.8% (11)
Cardiac arrest	0.3% (2)	0.3% (2)	0% (0)
MI (STEMI or NSTEMI)	2.7% (17)	1.7% (11)	1.2% (7)
Rehospitalization for unstable or progressive angina	15.4% (101)	10.4% (69)	10.5% (67)
Composite MACE	20.4% (132)	12.9% (83)	13.3% (85)
Cardiac death, arrest or MI	4.9% (31)	2.2% (14)	2.9% (18)

Stone et al. N Engl J Med 2011;361:226-35 CRF

PROSPECT: Completeness of 3-vessel IVUS and VH-IVUS imaging

Event type	Total # of events	Baseline QCA at event site	Baseline IVUS at event site	Baseline VH at event site
All MACE	245	227	140	132
Culprit lesion related	120	120	84	76
Non culprit lesion related	107	107	56	56
- With RLP	51	51	31	31
- Without RLP	56	56	25	25
Indeterminate	18	0	0	0

PROSPECT: Complications attributed to the 3vessel IVUS imaging procedure (n=697, nonhierarchical)

Death	0 (0%)
MI	3 (0.4%)
- Q-wave (from dissection)	1
- non Q-wave (from dissection)	2
PCI or CABG	10 (1.4%)
- CABG (from perforation)	1
- CABG (from dissection)	2
- PCI (from dissection)	9
Any imaging complication*	11 (1.6%)
*Some pts had more than one complication	

Searching for Vulnerable Plaques: Will It Ever Make Clinical Sense?

Yes

Intravascular imaging can identify rupture-prone TCFAs

No

With modern medical therapy, hard events (death/MI) that are related to plaque rupture occur in only 1% per year

TCFAs are not ubiquitous, 50% of high-risk patients have no identifiable TCFAs, and intravascular imaging identifies only 50% of TCFAs that cause future events

Three-vessel intravascular imaging is associated with a small, but finite rate of complications

TCFAs develop, heal, and/or rupture asymptomatically

TCFAs account for only approximately 50% of lesions that cause acute events. Other causes are erosions, severe stenoses, calcified nodules, and spontaneous dissections.

