Imaging for BVS

BioResorbable Vascular Scaffold

Roh Jin Seok, RT

Asan Medical Center

Bioabsorbable Coatings in Perspective Relative CoatingThickness

Scaffold mounted on the balloon

Use balloon markers to position scaffold

Locating Scaffold Marker Beads

IVUS Image

DES

OCT Image

BVS - IVUS OCT Image

BVS - IVUS

The *PREVENT*ive Implantation of Bioresorbable Vascular Scaffold on Stenosis With Functionally Insignificant Vulnerable Plaque

PREVENT Trial

Any Significant Epicardial Coronary Stenosis (DS>50%) with FFR >0.80 and with Two of the following

- 1. MLA < 4.0 mm²
- 2. Plaque Burden at MLA site >70%
- 3. Lipid-Rich Plaque on NIRS (_{max}LCBI_{4mm}>315)
- 4. TCFA defined by OCT or VH-IVUS

TCFA

- OCT definition: fibrous cap thickness<65 μm and arc>90°
- VH-IVUS definition: ≥10% confluent NC with >30° abutting to the lumen in 3 consecutive slices

Distal Ref Lumen : 3.2mm

1 mm

CASE - I

1 mm

NC Balloon 3.0mm

BVS 3.0 / 23mm

NC Balloon 3.0mm

NC Balloon 3.5mm

Incomplete Apposition

30

NC Balloon 3.0mm

Full Strut Apposition & Complete Scaffold Expansion

NC Balloon 3.5mm

IVERSITY OF ULSAN

Operating Protocol of BVS

Tamburino C. EuroIntervention 2015 May;11(1):45-52

For lesion preparation, it is generally advisable to use semi- or non-compliant balloons with a diameter equal to or only minimally undersized compared to the diameter of the selected BVS delivery system. Short (6 to 10 mm long) high-pressure balloons should be used after predilation of the segments when lesions show focal residual underexpansion due to the presence of highly calcific atherosclerotic plaques. Although no supporting data are available, the use of plaque modification devices (i.e., cutting/scoring balloons, rotational atherectomy) is encouraged when necessary to enable the BVS to cross and better expand calcified stenoses, but in the authors' experience this is rarely required. In the event that one cannot achieve full opening of the (last) predilatation balloon with no indentation, it is advisable not to implant a BVS.

onds. Due to the polymeric material, the BVS has a maximum scaffold expansion limit of 0.5 mm above its nominal diameter, which should be respected strictly during implantation. Upon scaffold deployment, one should aim to obtain <10% residual stenosis, full scaffold expansion and optimal wall apposition. Therefore, routine post-dilatation for 10-30 seconds using a high-pressure non-compliant balloon is advisable unless intracoronary imaging confirms full expansion and apposition.

ScT – Scaffold thrombosis

Figure 1. Early scaffold thrombosis (ScT). A, ScT 6 days after scaffold implantation for inferior ST-elevation myocardial infarction. Optical coherence tomography revealed undersizing in the proximal part of the scaffold as the key mechanism for ScT. B, ScT 8 days after scaffold implantation for non–ST-elevation myocardial infarction. Optical coherence tomography revealed underexpansion as the key mechanism for ScT: 3D reconstruction demonstrates an underexpanded distal segment with good expansion in the proximal segment of the scaffold.

Circ Cardiovasc Interv. 2015 Oct;8(10):e002518

BVS Incomplete apposition

BVS - IVUS

BVS 3.5 / 28 mm

BVS 3.5 / 12 mm

BVS Overlap

BVS - IVUS

ASAN Medical Center

NC Balloon 2.75mm

BVS 3.0 / 23mm

NC Balloon 3.5mm

Proximal Edge Dissection

NC Balloon 2.75 mm

BVS 3.0 / 28mm

NC Balloon 3.0mm

NC Balloon 3.0mm

Distal Edge Dissection

Post HP Balloon Inflation

Summary

- IVUS has advantage of visualising the total vessel diameter and area, which allows optimization of scaffold size while reducting the risk of disruption with oversized balloons.
- OCT has higer resoultion, so that scaffold intergrity, appostion to the underlying wall.
 Presence of thrombus, edge dissections, and changes in strut characteristics over time can be easily studied.

Tamburino C. EuroIntervention 2015 May;11(1):45-52

