21st CardioVascular Summit **TCTAP**2016

Multi Slice Computed Tomography Findings in More Than 800 Consecutive Patients for TAVR

Patrick W. Serruys¹, Hiroki Tateishi², Yosuke Miyazaki², Mohammad Abdelgani³, Yoshinobu Onuma²

¹ National Heart Lung Institute Imperial College, London, The United Kingdom
² Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
³ Academic Medical center, Amsterdam, The Netherlands

Live Case Session 4, Complex PCI Coronary & Valve Theater, Level 1 April 28, 2016, 3:00 PM~ 3:15 PM

Objective

- To assess the incidental non-cardiological findings that can be discovered fortuitously by systematic MSCT performed pre-treatment.
- To compare the aortic valve measurement performed by the operator and the corelab and their improvement overtime.
- To define the route of access according to the dimension of the peripheral vessels.

Study Population

- Population: 881 consecutive patients who were screened with Multi-Slice Computed Tomography (MSCT) in TAVR trials from Jan 2013 to July 2015.
- MSCT images were interpreted/analyzed by site and by imaging corelab in 846~881 depending on the type of parameter.

MSCT Acquisition

- ECG-gated contrast enhanced MSCT in a protocol similar to scan coronary MSCT.
- Non ECG-gated contrast enhanced scan was performed to evaluate abdominal aorta and peripheral access arteries(both iliacs, femorals and subclavian/axillary if applicable) for suitability for procedure.

Aortic annulus measurements (Systole)

- (left) Example of perimeter measurement
- (right) Major and minor diameter measurements.

Aortic annulus measurements (Diastole)

Sinus of Valsalva Height (Left)

Sinus of Valsalva Heights (Non)

Example of sinus of Valsalva diameters.

Sinus of Valsalva Heights (Right)

Aortic annulus measurements (Diastole)

Oblique coronal with measurement of 40mm above the aortic annulus (left) and double-oblique reformatted to be perpendicular to that location (right).

Aortic root angulation measurement on the standard coronal image.

Vessel measurement

Example of minimum abdominal aortic diameter. Stretched vessel (left), with the pink line at the location of the minimum luminal abdominal diameter. Orthogonal image (right), showing the minimum luminal diameter and the perpendicular diameter.

Example of the peripheral vessels and measurements for the right (left) and left (right) iliac arteries.

Baseline characteristics 1

variable	n=881
Age, years (mean±SD)	81.0±6.2
Female gender	42.5%
Height, cm (mean±SD)	169.0 ± 11.0
Weight, kg (mean±SD)	80.6±18.8
Hypertension*	92.4%
Diabetes*	34.8%
Dialysis*	0.4%
Previous CABG*	17.8%
Previous PCI*	17.8%

* Data available approximately 550 patients

Baseline characteristics 2: Incremental risk

variable	n=881
Chronic lung disease*	34.7%
FEV<750	2.2%
FEV1 750-1000 cc	1.9%
Home (Supplemental) 02	2.6%
Nocturnal Bi-PAP	5.8%
Liver Disease Child A/B	0.3%
Infectious endocarditis*	0.2%
Immunosuppressive Therapy*	7.3%
Peripheral Vascular Disease*	31.1%
Cerebrovascular disease*	16.8%

* Data available approximately 550 patients

Baseline characteristics 3: Incremental risk and risk scores

variable	n=881
LV Ejection Fraction	60.0±10.9%
Severe Diastolic Dysfunction	1.9%
PH (Systolic Pressure 60-80 mmHg)	2.9%
Severe Aortic Calcification	11.4%
$BNP \ge 550 \text{ pg/mL}$	16.0%
NT proBNP ≥ 3200 pg/mL	15.6%
creatinine, mg/dl*	1.1±0.3
STS Risk of Mortality	4.4±1.6
EuroSCORE Logistic	9.7±9.1
EuroSCORE II	2.8±6.4
Syntax	2.0±5.7
Katz Index	6.0±0.7
5-Meter Gait Speed >6 seconds	49.7%

* Data available approximately 550 patients

CT measurements site vs. Corelab

n=881	Site	Corelab	P-value
Annulus mean diameter	24.58±2.28 <	< 24.90±2.26	<0.001
Major annulus diameter	27.22±2.72 <	27.48±2.64	<0.001
Minor annulus diameter	21.84±2.40 <	< 22.25±2.33	<0.001
Aortic Annulus perimeter	78.50±7.16 =	= 78.35±7.01	0.220
Aortic root angulation	46.80±8.57 <	48.04±8.08	<0.001
Max Ascending Aorta diameter	33.63±3.78 >	33.26±3.28	<0.001
Minimum Sinus of Valsalva width	30.85±3.91 =	= 30.94±3.29	0.352
Minimum Sinus of Valsalva height	19.72±3.69 <	20.95±2.96	<0.001

Bland Altman Plot of CT measurement Aortic Annulus Perimeter Site vs. Corelab

Mean difference 1.15

Limit of Agreement -8.50 to 10.82

Mean difference -0.16

Limit of Agreement -7.10 to 6.77

Mean difference -0.22

Limit of Agreement -5.60 to 5.16

CT measurements site vs. Corelab

n=881	Site (mm)	Corelab (mm)	P-value
Minimum Right Femoral artery	7.27±1.56 >	> 7.00±1.30	<0.001
Minimum Right Iliac artery	7.32±2.60 >	• 6.74±1.39	<0.001
Minimum Left Femoral artery	7.34±1.62 >	> 7.02±1.36	<0.001
Minimum Left Iliac artery	7.26±1.57 >	6.86±1.41	<0.001

The sheath to femoral artery ratio (SFAR) predicted major vascular complications and Prostar Failure

SAFR predicts major vascular complication		SF	AR	
	Variables	≥1.05 (n = 55)	<1.05 (n = 72)	p Value
	Any vascular complication	23 (41.8%)	12 (16.7%)	<0.001
	VARC Major	17 (30.9%)	5 (6.9%)	0.001
	VARC Minor	6 (10.9%)	7 (9.7%)	0.827
	Femoral artery complication	15 (27.3%)	9 (12.5%)	0.035
	lliac artery complication	11 (20.0%)	2 (2.8%)	0.002
	In-hospital mortality	11 (20.0%)	5 (6.9%)	0.033
	30-day mortality	10 (18.2%)	3 (4.2%)	0.016

JACC cardiovascular interventions 2011; Kentaro Hayashida, Marie-Claude Morice et al

Predictors of Prostar Failure	Uni	variate	
Variables	Odds Ratio	95%CI	p Value
Early experience	3.66	1.04-13.89	0.047
SFAR	110.80	1.15–10,710.73	0.044

Prostar XL Perccutaneous Vascular Surgical System® for vessel closing

JACC cardiovascular interventions 2012; Kentaro Hayashida, Marie-Claude Morice et al

Classification of aortic valve calcification

Grade 1: no calcification

Grade 2: mild calcification (small isolated spots of calcification)

Grade 3: moderate calcification (multiple larger spots of calcification)

Grade 4: heavy calcification (extensive calcification of all aortic valve leaflets)

Tomaszewski, K. A. et at; Radiology, 2002

Grade 2

Grade 3

Grade 4

Degree and location of calcification

degree	1	2	3	4
n=881	0%	11%	51%	39%

locate	All leaflets	L+R	L+N	R+N
n=881	98%	0.3%	1.1%	0.7%

Aortic annulus and LV outflow tract calcification

		NCC LCC I	
	Isolated annulus calc. (%)	Annulus calc. extending into LVOT(%)	Total(%)
	2.5	16.1	18.6
Under LCC	1.2	6.4	7.6
Under NCC	0.3	4.5	4.8
Under RCC	0.5	0.9	1.4
Under 2 or 3 capsid	0.5	4.3	4.8

LVOT calcification and annulus rupture

Pre-procedural CT scan showed a huge calcified nodule on the annulus Post-procedural CT scan showed contrast leakage due to annulus rupture

Aortography showed contrast effusion from the aortic cusp

JACC cardiovascular intervention 2013; Kentaro Hayashida, Thierry Lefèvre et al

Annulus and LVOT calcification predict aortic regurgitation after TAVR

Grade 0	No calcification
Grade 1 (mild)	Small, non-protruding calcification
Grade 2 (moderate)	Protruding (>1 mm) or extensive (>50% of cusp sector) calcification
Grade 3 (severe)	Protruding (>1 mm) and extensive (>50% of cusp sector) calcification
LVOT: left ventricular o	utflow tract

Eurointervention 2014; Lutz Buellesfeld, Stephan Windecker et al

Coronary take-off and Sinus of Valsalva Height

Left Coronary Cusp

Right Coronary Cusp

SOV height (RCC) <15mm Low take-off of RCA<10mm

Take-off	%
Low take-off LCA	4.0
Low take-off RCA	0.8
Low SOV Height	1.2

Aortic root disease

Location	Calcification (%)	Aneurysm (%)	Plaque/ thrombus(%)	Dissection (%)	Tortuous/ bend(%)
Thoracic	89	1.1	0.7	0.6	2 /
Abdominal	98	6.1	5.2	1.2	3.4

dissection Calcified dissection seen in abdominal aorta

Access site related disease

	Calcification (%)	<6mm (%)	Tortuous/ bend(%)	Plaque/ thrombus(%)	Aneurysm (%)	Dissection (%)
Ilio-femoral artery	98	33	6.8	4.8	2.2	1.6

Access site related disease

Femoral access site	%
Lt or rt high bifurcated femoral artery	11.0
Aorto-iliac stent	1.0
Stent in iliac artery	0.2
Aorto-bifemoral bypass	0.2
Aorto-iliac stent and F-F bypass	0.1

Cardiac findings

findings	%
Possible LAA thrombus	3.7
Eliptical LVOT	0.8

Anomalous vessel and etc

Anomalous vessel arises from the aortic arch

Left common carotid and innominate artery share same origin 2.7	findings	%
	Left common carotid and innominate artery share same origin	2.7
Anomalous vessel originating from aortic arch 0.1	Anomalous vessel originating from aortic arch	0.1
Coarctation in distal arch 0.1	Coarctation in distal arch	0.1
LCA originating from RCC 0.1	LCA originating from RCC	0.1
RCA originating from LCC 0.3	RCA originating from LCC	0.3
RCA originating from between RCC and NCC 0.1	RCA originating from between RCC and NCC	0.1

Other findings

findings	%
LIMA pass under sternum	0.3
IVC filter	0.1
LIMA occlusion	0.1
Possible aneurysm SVG	0.1

LIMA appears to travel close to midline

Summary

- 1. MSCT was systematically used to screen patients for eligibility of a TAVR trial.
- 2. In the beginning of the trial, the measurements of MSCT was significantly different between site and corelab. The difference became smaller with experiences of CT measurements by the site.
- 3. Most of annulus calcification extended into LVOT. Annular calcification distributed under LCC and NCC, and under both 2 cusps. The risk of paravalvular leak was ranging from hazard ratio 1.37 to 5.37.
- 4. Ilio-femoral artery less than 6mm was measured about 30% with hazard ratio of complication 186.20, SAFR>1.05
- Left atrial appendage thrombus was detected in approximately 4%.
- 6. The detection of anomalous vessel was helpful to decide the access route.

Conclusion

MSCT should be recommended for the screening considering all the measurement and abnormalities that could be discovered at the level of the valve, at the level of the aorta and in the peripheral circulation.

Thank You!

Volume 11 - Number 13 - April 2016 - ISSN: 1774-024X EuroIntervention

Asia Intervention

www.asiaintervention.org

Volume 2 - Number 1 - January 2016 - ISSN: 2426-3958

CORONARY INTERVENTIONS

- 1457 COmplex coronary Bifurcation lesions: RAndomized comparison of a strategy using a dedicated self-expanding biolimus-eluting stent versus a culotte strategy using everolimus-eluting stents: primary results of the COBRA trial C. Dubois, T. Adriaenssens, et al
- 1468 Significance of prior percutaneous revascularisation in patients with acute coronary syndromes: insights from the prospective PROSPECT registry A. Iñiguez, G.W. Stone, et al
- 1475 Clinical outcomes following "off-label" versus "established" indications of bioresorbable scaffolds for the treatment of coronary artery disease in a real-world population T. Miyazaki, A. Colombo, et al.
- 1479 A novel approach to treat in-stent restenosis: 6- and 12-month results using the everolimus-eluting bioresorbable vascular scaffold P. Jamshidi, F. Cuculi, et al
- 1487 Patient preference regarding assessment of clinical follow-up after percutaneous coronary intervention: the PAPAYA study M.M. Kok, M.J. Elzerman, et al.
- 1495 Does access to invasive examination and treatment influence socioeconomic differences in case fatality for patients admitted for the first time with non-ST-elevation myocardial infarction or unstable angina? S. Mårtensson, M. Osler, et al
- 1503 Virtual reality training in coronary angiography and its transfer effect to real-life catheterisation lab U.I. Jensen P. Tornvall et al.

1511 A disaster never comes alone: total ostial occlusion of the left main coronary artery with an anomalous origin P. Rodrigues, S. Torres, et al

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

- 1512 Left atrial appendage occlusion with the AMPLATZER Amulet device: an expert consensus step-by-step approach A Tzikas H Omran et al
- 1522 The prognostic value of acute and chronic troponin elevation after transcatheter aortic valve implantation J.M. Sinning, N. Werner, et al
- 1530 Emergency transcatheter aortic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic stenosis C. Frerker, K.H. Kuck, et al
- 1537 First-in-man report of residual "intra-clip" regurgitation between two MitraClips treated by AMPLATZER Vascular Plug II M. Taramasso, F. Maisano, et al
- 1541 First transfermoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system T. Wengenmayer, S. Grundmann, et al
- 1545 First Lotus aortic valve-in-valve implantation to treat degenerated Mitroflow bioprostheses F. Castriota, A. Cremonesi, et al
- 1549 Direct Flow valve-in-valve implantation in a degenerated mitral bioprosthesis G Bruschi F De Marco et al

CORONARY INTERVENTIONS

- 19 Late angiographic and clinical outcomes of the novel BioMime[™] sirolimus-eluting coronary stent with ultra-thin cobalt-chromium platform and biodegradable polymer for the treatment of diseased coronary vessels: results from the prospective, multicentre meriT-2 clinical trial
- 28 Impact of chronic lung disease after percutaneous coronary intervention in Japanese patients with acute coronary syndrome
- 36 Distribution characteristics of coronary calcification and its substantial impact on stent expansion: an optical coherence tomography study
- 44 Smooth arterial healing after paclitaxel-coated balloon angioplasty for in-stent restenosis assessed by optical frequency domain imaging
- Mediastinal haematoma complicating percutaneous 48 coronary intervention via the radial artery

INTERVENTIONS FOR STRUCTURAL HEART DISEASE AND HEART FAILURE

- 49 Comparison of aortic annulus dimensions between Japanese and European patients undergoing transcatheter aortic valve implantation as determined by multi-detector computed tomography: results from the OCEAN-TAVI and a European single-centre cohort
- 57 Combined percutaneous transvenous mitral commissurotomy and left atrial appendage closure as an alternative to anticoagulation for rheumatic atrial fibrillation

EDITORIAL

- 7 Evolution and current status of interventional cardiology in India
- 10 Tailoring TAVI in Asia: insights from MSCT
- 13 Opening the shell for better stent results

ASIA-PACIFIC HOTLINES AT TCT 2015

- 16 Asia-Pacific Hotlines at TCT 2015: a prospective randomised trial of paclitaxel-eluting vs. everolimuseluting stents in diabetic patients with coronary artery disease (TUXEDO)
- 17 Asia-Pacific Hotlines at TCT 2015: bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease (ABSORB China Trial)
- 18 Asia-Pacific Hotlines at TCT 2015: evaluation of initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis (The CURRENT AS registry)

HOW SHOULD | TREAT?

- 58 How should | treat a patient with critical stenosis of a bifurcation of the left main coronary artery with an acute angulation between the left main artery and the left circumflex artery?
- 65 How should I treat a percutaneous posteromedial mitral periprosthetic paravalvular leak closure in a bioprosthesis with no radiopaque ring?

Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

www.eurointervention.org

CHIEF EDITORS Runlin Gao, Upendra Kaul, Takeshi Kimura, Seung-Jung Park, Huay Cheem Tan

CONSULTING EDITORS Christoph Naber, Richard Ng SENIOR CONSULTING EDITOR Patrick W. Serruys