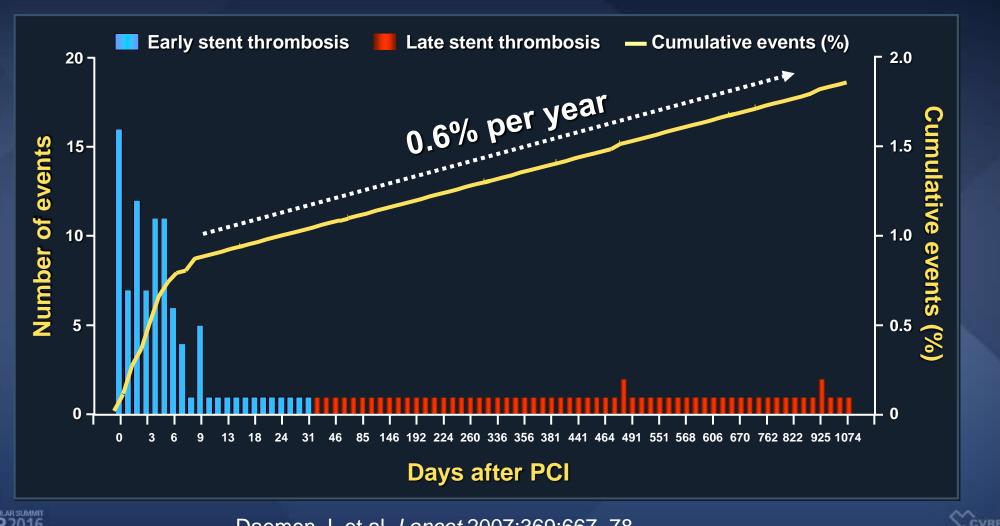
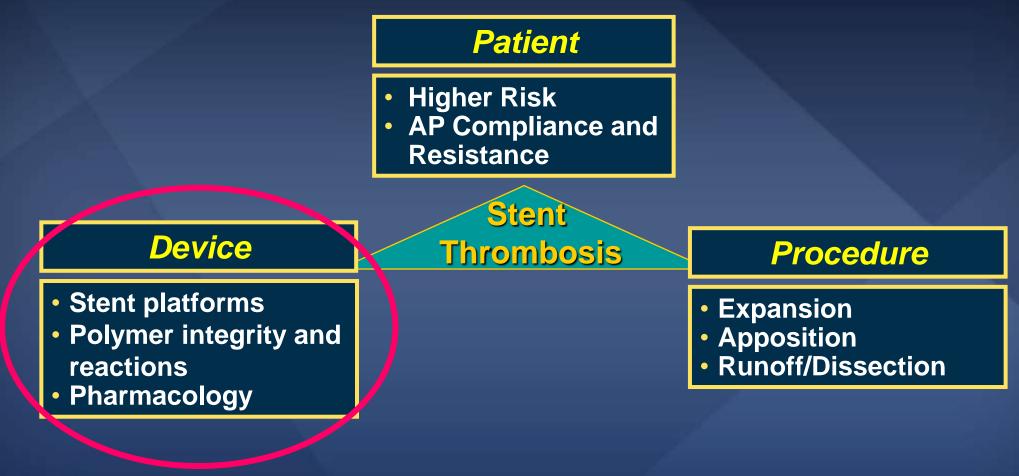
DES Thrombosis and Restenosis:

Still Problematic in Current Real-World with Updated DES?


Duk-Woo Park, MD, PhD Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

Risk of Stent Thrombosis after 1st Generation DES

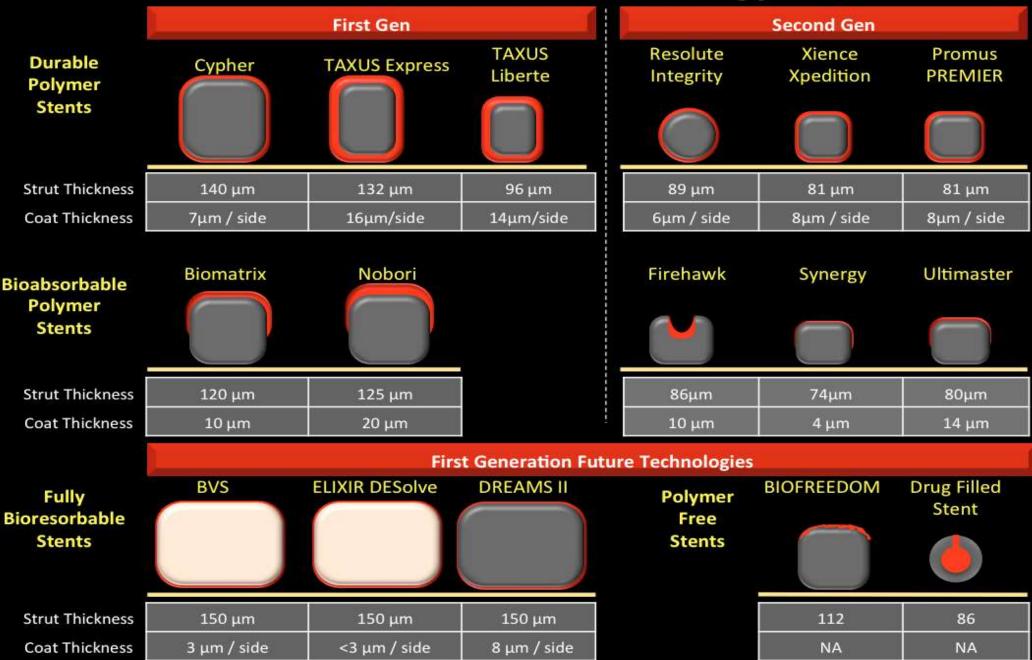
SES (n=3823) or PES (n=4323) at 2 academic centers



Daemen J, et al, *Lancet* 2007;369:667–78

TCTAP 2016

Stent Thrombosis


Patient, Device, Procedure

TCTAP 2016

Evolution of DES Technology

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 65, NO. 23, 2015

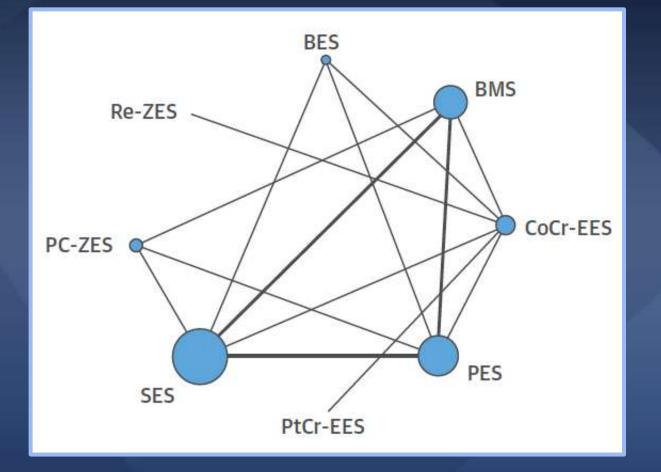
ISSN 0735-1097/\$36.00

http://dx.doi.org/10.1016/j.jacc.2015.04.041

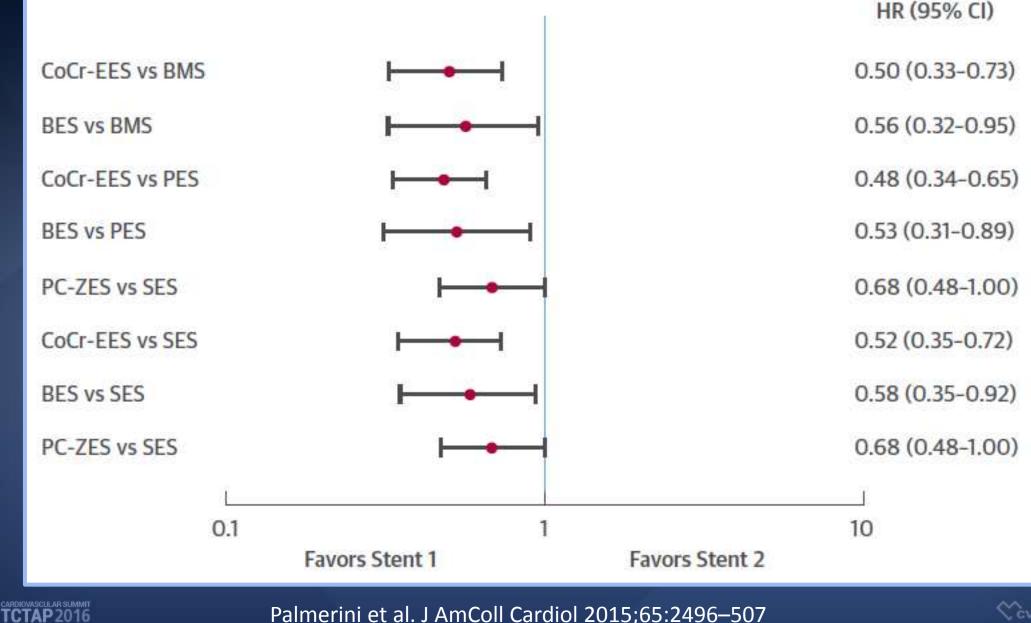
EDITORIAL COMMENT

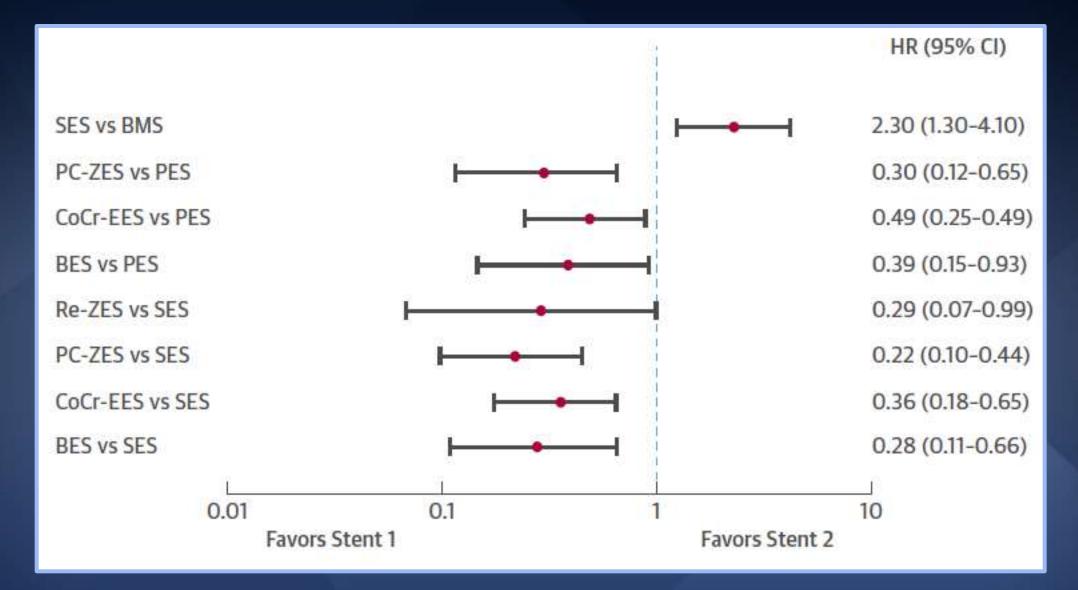
Percutaneous Coronary Intervention Finally Mature Enough*

Stéphane Rinfret, MD, SM, † Suzanne J. Baron, MD, MSc, ‡ David J. Cohen, MD, MSc‡


Stent Thrombosis In-Stent Restenosis

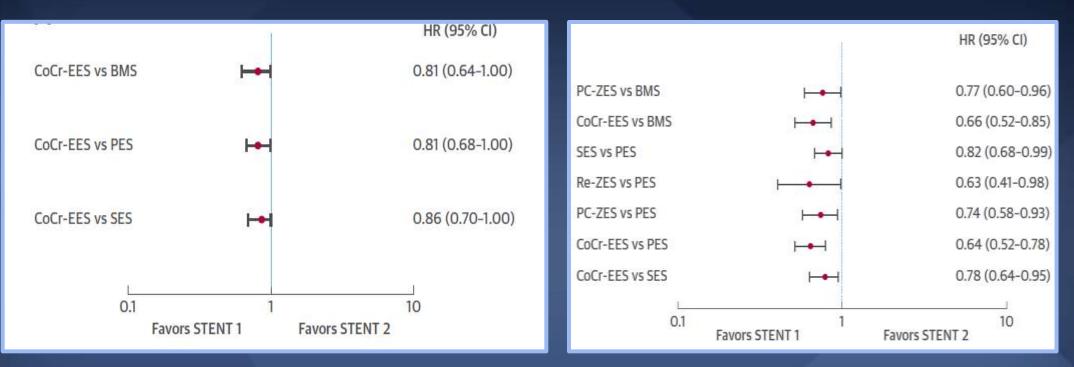
CVRF


Updated Network Meta-Analysis including RCT with at least 3 year FU 51 RCTs; 52,158 patients, median 3.8 years



Definite or Probable ST

Very Late Definite or Probable ST



Death

MI

Updated DES; Enhanced Safety Outcomes


 Second-generation DES have been developed with novel materials and delivery systems (i.e., changes in stent alloy, architecture, thickness, polymer characteristics, drug type, dose, and release kinetics)

more rapid and complete endothelialization

 Second-generation DES showed better safety outcomes (ST, death, or MI) than first-generation DES or BMS during long-term FU.

Pathology of Restenosis

In-Stent Restenosis = Intimal Hyperplasia

Mechanisms of DES Restenosis

Biological factors Drug resistance Hypersensitivity Mechanical factors Non uniform stent strut distribution **Stent fractures Polymer peeling** Non uniform drug deposition Technical factors

Incomplete stent expansion Stent gaps or "misses" (uncovered lesion segments) Barotrauma to unstented segments

Old vs. Newer DES

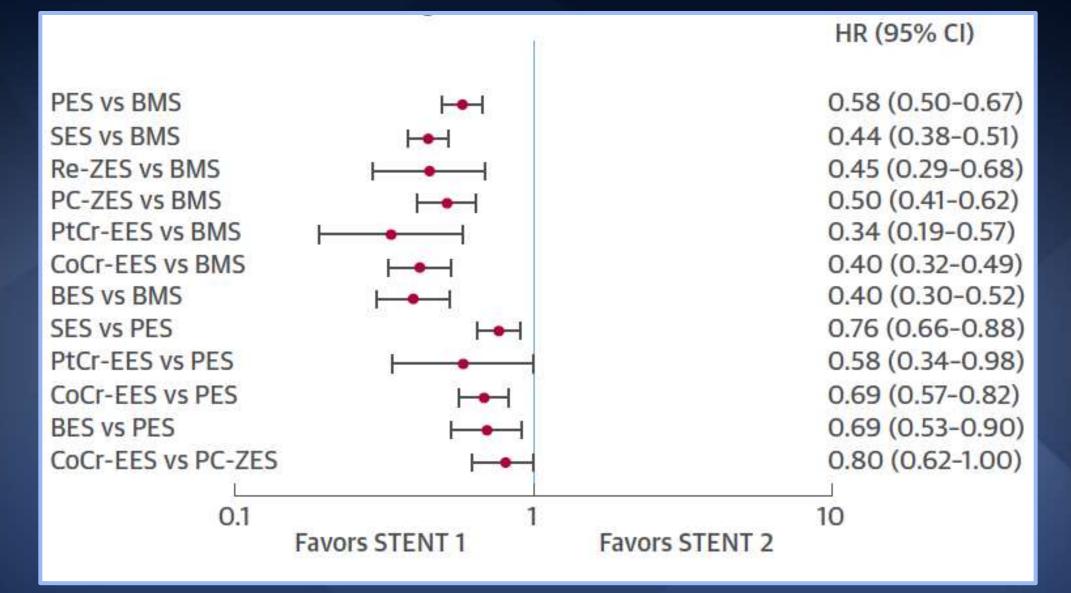
New anti-proliferative drugs Biodegradable polymer Thinner struts Better strut coverage

 \rightarrow *Expected to reduce* **neoatherosclerosis**...

	73 SES	85 PES	46 EES	P vs. SES	P vs. PES
Median F/U	9 months	7 months	7 months		
Uncovered strut, %	18.0 (0-51.4)	18.7 (7.1-44.4)	2.6 (0-7.1)	<0.001	<0.001
Fibrin deposition,%	29.9 (12.1–59.9)	51.1 (36.9–72.9)	8.5 (0-28.2)	0.001	<0.001
Inflammatory score	1.0 (0.3–2.0)	1.0 (0.1–1.4)	0.26 (0-0.6)	<0.001	0.006
Neoatherosclerosis	25 (35%)	15 (19%)	12 (29%)	0.91	0.19

TCTAP 2016

Otsuka, Virmani et al. Circulation 2014;129:211-23


Angiographic Follow-Up In Contemporary DES Studies

- Routine angiographic follow-up is allowed to asses the efficacy performance of early DES.

 In contemporary DES practice, clinical restenosis measured as TLR or TVR is a mostly adapted clinical outcome instead of invasive angiographic restenosis.

Target Vessel Revascularization

Updated DES; Enhanced Efficacy Outcomes

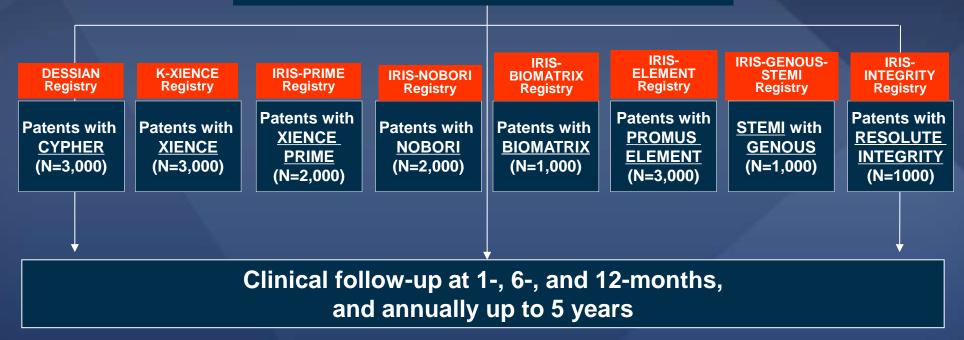
 Second-generation DES have been developed with novel materials and delivery systems.

 By a meta-analysis of 51 comparative trials, second-generation DES showed better efficacy outcomes than either first-generation DES or BMS after a median 4-year FU.

IRIS-DES Registry

Design

- **DESIGN:** An unrestricted, multicenter, prospective cohort
- OBJECTIVE: To compare the safety and efficacy of the second- or newer-generation DES and the firstgeneration DES in everyday clinical practice,
- PRINCIPAL INVESTIGATOR Seung-Jung Park, MD, PhD, Asan Medical Center, Seoul, Korea


Evaluation of Effectiveness and Safety of the First, Second, and Newer

Drug-Eluting Stents in Routine Clinical Practice,

IRIS-DES Registry

Consecutive PCI patients receiving New DES without a mixture of other DES

Prospective Enrollment

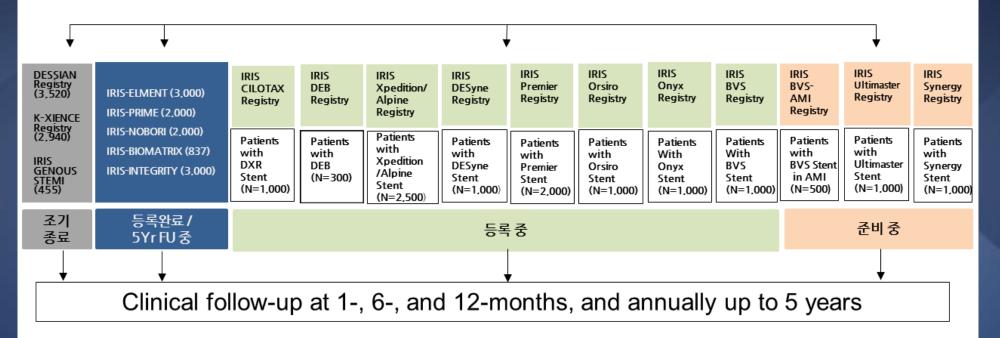
Outcomes After Unrestricted Use of Everolimus-Eluting and Sirolimus-Eluting Stents in Routine Clinical Practice A Multicenter, Prospective Cohort Study

Duk-Woo Park, MD; Young-Hak Kim, MD; Hae-Geun Song, MD; Jung-Min Ahn, MD; Won-Jang Kim, MD; Jong-Young Lee, MD; Soo-Jin Kang, MD; Seung-Whan Lee, MD; Cheol Whan Lee, MD;
Seong-Wook Park, MD; Sung-Cheol Yun, PhD; Sung Ho Her, MD; Seung Ho Hur, MD; Jin Sik Park, MD; Myeong-Kon Kim, MD; Yun Seok Choi, MD; Hyun Sook Kim, MD; Jang-Hyun Cho, MD; Sang Gon Lee, MD; Yong Whi Park, MD; Myung-Ho Jeong, MD; Bong Ki Lee, MD; Nae-Hee Lee, MD; Do-Sun Lim, MD; Junghan Yoon, MD; Ki Bae Seung, MD; Won-Yong Shin, MD; Seung-Woon Rha, MD; Kee-Sik Kim, MD; Seung-Jea Tahk, MD; Byoung Eun Park, MD; Taehoon Ahn, MD; Joo-Young Yang, MD; Yong Seok Jeong, MD; Jay-Hyun Rhew, MD; Seung-Jung Park, MD; for the IRIS-DES Investigators*

- Background—It remains unclear whether there are differences in the safety and efficacy outcomes between everolimuseluting stents (EES) and sirolimus-eluting stents (SES) in contemporary practice.
- *Methods and Results*—We prospectively enrolled 6166 consecutive patients who received EES (3081 patients) and SES (3085 patients) between April 2008, and June 2010, using data from the Interventional Cardiology Research In-Cooperation Society-Drug-Eluting Stents Registry. The primary end point was a composite of death, nonfatal myocardial infarction (MI), or target-vessel revascularization (TVR). At 2 years of follow-up, the 2 study groups did not differ significantly in crude risk of the primary end point (12.1% for EES versus 12.4% for SES; HR, 0.97; 95% CI, 0.84–1.12, *P*=0.66). After adjustment for differences in baseline risk factors, the adjusted risk for the primary end point remained similar for the 2 stent types (HR, 0.96; 95% CI, 0.82–1.12, *P*=0.60). There were also no differences between the stent groups in the adjusted risks of the individual component of death (HR, 0.93; 95% CI, 0.67–1.30, *P*=0.68), MI (HR, 0.97; 95% CI, 0.79–1.18, *P*=0.74), and TVR (HR, 1.10; 95% CI, 0.82–1.49, *P*=0.51). The adjusted risk of stent thrombosis also was similar (HR, 1.16; 95% CI, 0.47–2.84, *P*=0.75).
- Conclusions—In contemporary practice of percutaneous coronary intervention procedures, the unrestricted use of EES and SES showed similar rates of safety and efficacy outcomes with regard to death, MI, sent thrombosis, and TVR. Future longer-term follow-up is needed to better define the relative benefits of these drug-eluting stents.
- Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01070420. (Circ Cardiovasc Interv. 2012;5:365-371.)

TCTA

CVRF


Evaluation of Effectiveness and Safety of the First, Second, and New

Drug-Eluting Stents in Routine Clinical Practice;

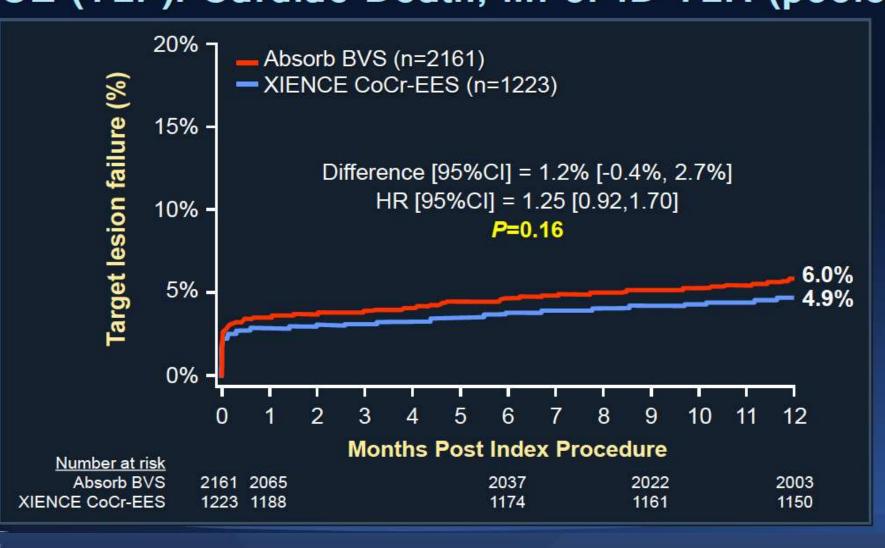
IRIS-DES Registry

Consecutive PCI patients receiving New DES without a mixture of other DES

Prospective Enrollment

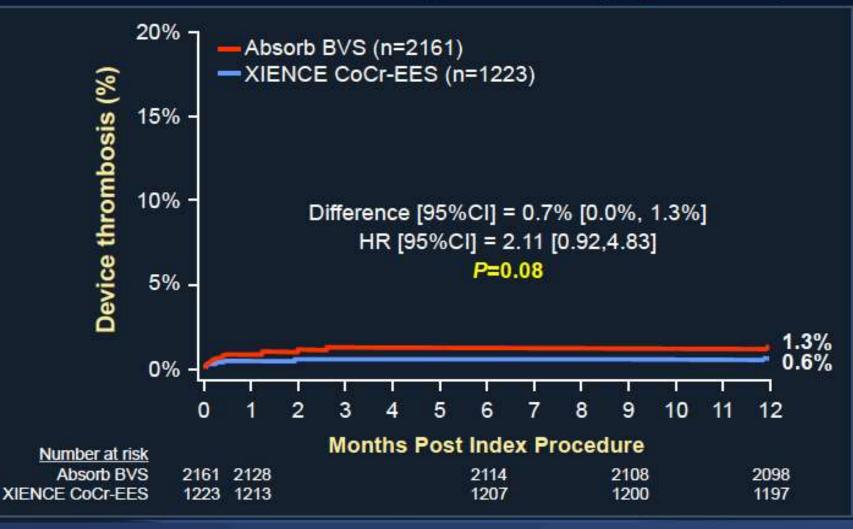
*Primary end point: Composite of Death, MI, and TVR at 12-months

TCTA


Comparative Effectiveness Research of Various DES

- Enrollment and at least 2-year clinical follow-up was completed for Cypher, Xience, Genous, Promus element, Xience prime, Nobori, Biomatrix, and Resolute intergrity.
- Results are expected in the summer of 2016.

ABSORB ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled)

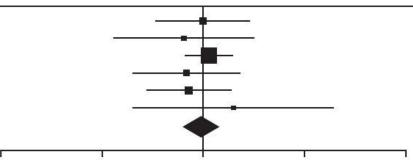


TCTAP2016

Lancet 2016;387:1277-89.

ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China Device Thrombosis (Def/Prob) (pooled)

ABSORB


Lancet 2016;387:1277-89.

Study-level Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

A Target lesion revascularisation

	BVS		EES		Weight	Fixed-effects odds ratio	
	Events	Total	Events	Total	(%)	(95% CI)	
ABSORB China	7	238	7	237	13·2	1.00 (0.34-2.88)	
ABSORB II	4	335	3	166	5.9	0.64(0.13-3.12)	
ABSORB III	42	1313	19	677	51.6	1.14 (0.67-1.95)	
ABSORB Japan	7	265	5	133	10.1	0.68 (0.20-2.31)	
EVERBIO II	8	78	11	80	16.3	0.72 (0.28-1.87)	
TROFI II	2	95	1	96	2.9	1.98 (0.20-19.29)	
Overall	70	2324	46	1389	100	0.97(0.66-1.43)	

Heterogeneity: χ^2 =1.69, df=5; p=0.89; l^2 =0% Test for overall effect: Z=0.16; p=0.87 Random-effects odds ratio 0.97 (95% Cl 0.66–1.43)

B Definite or probable stent thrombosis

	BVS		EES		Weight	Fixed-effects odds ratio			
-	Events	Total	Events	Total	(%)	(95% CI)			
ABSORB China	1	238	0	232	3.1	7.21 (0.14-363.23)) 	2	
ABSORB II	3	335	0	166	8.2	4.49 (0.04-49.92)			
ABSORB III	20	1301	5	675	69.1	1.89 (0.82-4.34)			
ABSORB Japan	4	262	2	133	16.5	1.02 (0.18-5.58)	1 .1		
EVERBIO II	0	78	0	80		Not estimable		50 Juli	
TROFI II	1	95	0	96	3.1	7.47 (0.15-376.35)		-	
Overall	29	2309	7	1382	100	1.99 (1.00-3.98)			
Heterogeneity: χ²=1·90, df=4; p=0·75; l²=0% Test for overall effect: Z=1·96; p=0·05 Random-effects odds ratio 1·99 (95% Cl 1·00–3·98)				0.01	0·1 BVS better	1 10 EES better	100		

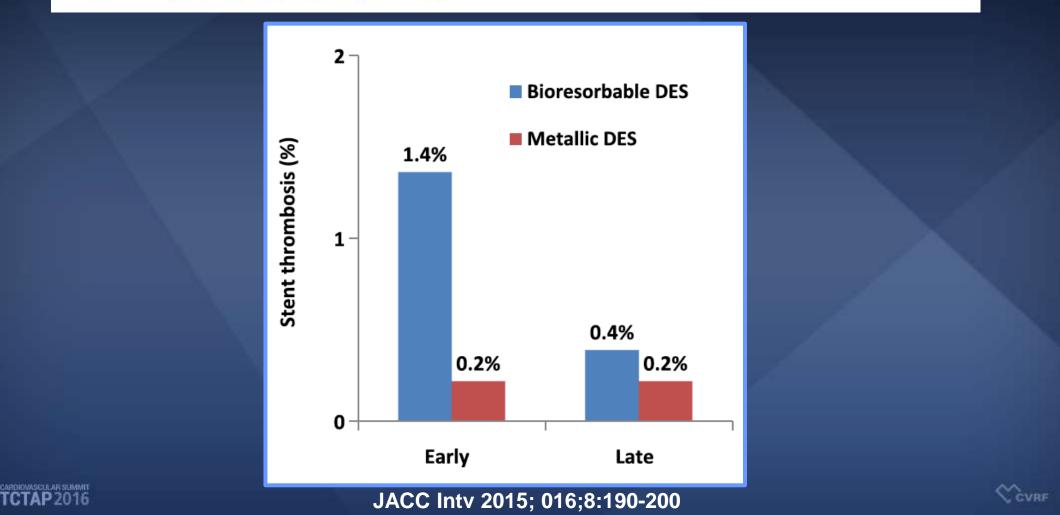
Lancet 2016; 387: 537-44

BVS Registry

A Propensity-Matched Cohort (N=1,810) of the GHOST-EU and XIENCE V USA

	BVS (%)	EES (%)	HR (95% CI)	Р
Device-oriented composite outcome	5.8	7.6	0.75 (0.52 to 1.08)	0.12
CV death	0.7	1.9	0.36 (0.14 to 0.92)	0.025
MI	2.4	4.0	0.61 (0.36 to 1.05)	0.07
TLR	4.6	3.5	1.35 (0.84 to 2.17)	0.22
Definite or probable ST	1.8	1.1	1.62 (0.73 to 3.57)	0.23

JAm Coll Cardiol Intv 2016;9:440-9



Bioresorbable Drug-Eluting Stents

An Immature Technology in Need of Mature Application*

Robert A. Byrne, MB, BCH, PhD, Adnan Kastrati, MD

Current 1st generation BVS

- Efficacy Issues in BVS
 - Inferior midterm angiographic performance
 - Similar rates of composite patient-oriented and device-oriented adverse events
- Safety Issues in BVS
 - Increased peri-procedural MI
 - Increased early risk of stent thrombosis
 - Data on long-term FU and optimal duration of DAPT is not yet available.

Current Status and Future Evolution of DES

- Current DES with durable and bioresorbable polymers have improved safety and efficacy outcomes compared to earlier DES and BMS.
- Polymer-free DES is also promising and will further reduce the risk of ST and long-term DAPT requirement.
- More studies are needed to determine whether BVS can lower the risk of late events and provide additional clinical advantage beyond contemporary metallic DES.

Last Message; Current PCI with DES

 We now have reached a major milestone in the maturation of PCI as a treatment for CAD.

 Regardless of where the technology goes, "When technology stops continued innovation", "The Knowledge will also stops"

 As the technologies are getting better and better, we can provide a better opportunity for optimal patient care in the long run.

