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Current limitation of BRS

If a bioresorbable scaffold is ultimately expected to have
the same range of applicability as a durable metal stent,
the gap in mechanical properties must be reduced.

Currently, three primary limitations exist:

- Low tensile strength and stiffness which require thick
struts to prevent acute recoil

- Insufficient ductility which impacts scaffold retention
on balloon catheter and limits the range of scaffold
expansion during deployment

- Instability of mechanical properties during vessel
remodeling if bioresorption is too fast



Let's take a “"crash course” of material science
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Mechanical properties of metal vs. PLLA

Polymer/ metal

Poly(L-lactide)

Poly (DL-lactide)

Cobalt chromium

Magnesium alloy

Tensile modulus
of elasticity

(Gpa)

3.1-3.7

3.1-3.7

210-235

40-45

Tensile Elongation at
strength (Mpa) break (%)

60-70 2-6
45-55 2-6
1449 ~40
220-330 2-20

Onuma, Serruys Circulation 2011



Insufficient ductility impacts scaffold retention
on balloon catheter and limits the range of scaffold expansion
during deployment
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In materials science, DUCTILITY is a solid material's
ability to deform under tensile stress; this is often
characterized by the material's ability to be stretched

into a wire.
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Performance goal and mechanical dilemma

A

Performance goal for NEW generation BRS
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From a single wire to a coronary scaffold/stent
Strain of scaffold during crimping and implantation
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Processing methods of PLLA

Processing method

Materials form

Zeus Inc Extrusion tubing PLLA
Arterius Solid orientation by dlg—drawmg of PLLA
extruded tubing
Abbott Vascular Blow-moulding of extruded tubing PLLA
Spraying PLLAD dissolved in a solvent
onto a mandrel to form a tube. The tube PLLA
Elixir has to be subjected to annealing  |(dissolved in an organic
process up to 72 hrs. The device might solvent)
also require heat annealing
i PLLA
ART Annealing of the scaffold made from a (specifically
tube )
synthesised)

Annealing is a heating of a polymeric part to below it's glass
transition temperature in order to relieve the internal stresses

introduced into the part during its fabrication (molding, cooling

after molding, machining, welding)



http://www.substech.com/dokuwiki/doku.php?id=polymers&DokuWiki=fc08b023211be3a7be5bf7490247ae30
http://www.substech.com/dokuwiki/doku.php?id=glass_transition&DokuWiki=fc08b023211be3a7be5bf7490247ae30
http://www.substech.com/dokuwiki/doku.php?id=glass_transition&DokuWiki=fc08b023211be3a7be5bf7490247ae30
http://www.substech.com/dokuwiki/doku.php?id=methods_of_polymers_fabrication&DokuWiki=fc08b023211be3a7be5bf7490247ae30
http://www.substech.com/dokuwiki/doku.php?id=plastics_welding&DokuWiki=fc08b023211be3a7be5bf7490247ae30




Extrusion
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Chamber

Melt polymer resin and shape it into a tubular geometry.
Select a screw based upon the material of interest.

Select process conditions leading to:
Predictable and acceptable decrease in polymer molecular weight.

High concentricity and tight dimensional control.



Oriented tube
Extruded, temperature
conditioned tube

- Draw direction

Mandrel

Heated die



ARTERIUS: ArterioSorb scaffold

e

" PLLA based

Melt processing
(EXTRUSION) and DIE-

(a) Wall thickness = 110micron

Strut wall thickness (micron)

(b) Wall thickness = 140micron (c) Wall thickness = 150micron
Target size (mm)
2.5-3.00

3.00 - 3.50

3.5-4.00

DRAWING (solid phase
orientation)

- Solid-Phase Oriented tube
with very high mechanical
properties

* Thinner strut (= 150pm wall
thickness, including 140pm
and 110pm) to be
manufactured with enhanced
physical performance similar
to that of metal alloy stents.




Extrusion




Cutting




Crush resistance test

Radial force (N)

0 - ‘ — -
0 1 2 3 4 5

Diameter (mm)



Impact of platform and polymer on radial force
compared to metallic stents
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Spinning

Solution spinning

Solution spinning vs. Melt spinning

In solution spinning, the polymer is
dissolved in a solvent whereas in
melt spinning the material is melted
to form the liquid prior to fiber
formation.

Fibers prepared by solution spinning Polymer mel

are generally superior to melt spun &;{ ——
fibers with respect to mechanical S i T
properties (higher drawability, less Air quench |

thermal degradation, less mechanical
degradation, and less hydrolytic
deg radation) C ’) Convergence guide
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Stretching/Spinning/MicroBraiding

« Stretching the fibers extends the
molecular chains to increase the
strength of the fibers from 70 to 620
Mpa (reference: strength of stainless
steel 316L = 500MPa)

A bioresorbable scaffold comprised
of fibers is strengthened by
stretching or drawing the fibers.

d

As-

Ex:linLAple polyn:lerize Fib er
Material )
<2.3 GPa(2)-
Tensile 60-70 Solution
Strength* MPa <0.6 GPa(?)-
Melt
Elongation o 0/ (3)
to break* 2-6% <25%
Modulus* | 3137 | 4.10GPa®

MPa




Forming Interconnected fibrous network

o

-

Fiber by itself is useless.

Forming an interconnected
fibrous network is critical:
« Fiber-to-fiber junctions
« Fiber alighment
« Consolidation vs.
porosity
- Polymer morphology

In collaboration with Jack Scanlon (Heartlon)



Forming Interconnected fibrous network

i i Consolidation Forms Network
Conso' Idatlon Imparting Stiffness
Porous Wall Thickness & Dimensional Uniformity
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M icr Obra i d i n g In collaboration with Jack Scanlon (Hart'lon)
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Manli Cardiology’s Microfiber Technology

Highly oriented polylactide
constituting a circular

monofilament with preferred

directional mechanical
properties.

Convert monofilament’s
directional mechanical
properties into scaffold’s

radial mechanical properties.

Transform circular
monofilament into a scaffold
with circular strut geometry.
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From the rectangular shape of the struts
into the ovoid shape

Absorb Mirage




E Shear stress and flow analysis
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Pre-clinical study has to respect some basic rules...

11 . . . : : . : : : : 340

An example of premature resorptlon W|th Iate

9
8 .............................................................................................................................................................................
/A TSN SOV SRS SRS IS IO JSUTN: ORI N SEPOASSPINS SOST s ORI S
~
N
E TS SO A S R D Y - k. .
[
O 5 e RS SR Y N
()]
i
<
4 ...........
3 .................................................................................................................................................................
p2ACn EECICUTOTIURURE: SOPSURSUSOVIUPOUDUSORIUROIIUSICI-ICIIORMPIDRRORS SRRRRRR,. 000 . & ErTTTRI T TR O OTIY I EOT OO P EOROPEOL PUPECTORTOROORS DYSOTORTOPSORODS: TEDIOOIORSOREORE L
® Mean LumenArea E : _'60
..3...'.\.’.'9.?.0EDQQ‘HTEDQ‘..@EQ? Area | o] .1 40
@ MeaniNeointimal area (ehdolummal stent COntour) I
0 BodyWelght : - 50
6 7 8 11 12 13

TIME (Month)



Pre-clinical study has to respect some basic rules...
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Conclusions

Future struts of BRS are to be:
—Stronger and ductile
—Thinner and round

— Potentially quickly resorbable but
without inducing inflammatory
reaction

... YES, we can!
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