

BRS Failure: Insights from Imaging

Yoshinobu Onuma^{1,2} Yohei Sotomi³ Patrick W. Serruys⁴

 Thorax Centre Erasmus MC, Rotterdam, 2 Cardialysis B.V., Rotterdam
 Academisch Medisch Centrum, Amsterdam
 International Centre for Cardiovascular Health, Imperial College, London

BRS failure: Imaging findings

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

ABSORB 1-Year Meta-analysis

ABSORB II, ABSORB III, ABSORB Japan, ABSORB China Device Thrombosis (Def/Prob) (pooled)

Stone et al. Lancet 2016

What is the reported rate of Early Scaffold

Thrombosis?

Ishibashi et al. EuroIntervention Updated

Study	Indication	Ν	Acute ST N (%)	Subacute ST, N (%)	Early ST, N (%)	Imaging	
Abizaid et al, ABSORB EXTEND	SAP	512	0	2 (0.4%)	2 (0.4%)	OCT 14 cases	
Serruys et al., ABSORB B	SAP	101	0	0	0	IVUS/OCT	
Onuma et al., ABSORB A	SAP	30	0	0	0	IVUS/OCT	
CORONARY CTO	SAP	35	0	0	0	IVUS/OCT	
Serruys et al., ABSORB II	SAP / UAP	335	1 (0.3)	1 (0.3)	2 (0.6)	IVUS	SAP/UAP
ASSURE registry	SAP / UAP	183	0	0	0	-	0.3%
BVS EXPAND	SAP / UAP	200	0	0	0	-	
ABSORB Japan	SAP / UAP	226	0	3 (1.1%)	3 (1.1%)	IVUS/OCT	
ABSORB III	SAP / UAP	1322	2 (0.2%)	12 (0.9%)	14 (1.1%)	-	
ABSORB China	SAP / UAP	238	0	1 (0.4%)	1 (0.4%)	-	
Gori et al	ACS	150	1 (0.7%)	1 (0.7%)	2 (1.4%)	-	ACS
POLAR ACS	ACS	100	0	0	0	-	1.0%
Kajiya et al.	STEMI	11	0	0	0	-	
Diletti et al., BVS STEMI	STEMI	49	0	0	0	OCT	
Kocka et al., PRAGUE-19	STEMI	41	0	1 (2.4%)	1 (2.4%)	OCT	
Wiebe et al.	STEMI	25	0	0	0		STEMI
Ielasi et al., RAI registry	STEMI	74	0	1(1.4%)	1(1.4%)	OCT/IVUS 4.4%	1.5%
TROFI II	STEMI	95	0	1 (1.1%)	1 (1.1%)	OCT	
BVS Examination	STEMI	290	NA	NA	6 (2.1%)	-	
Kraak et al., AMC Single Centre	All-comers	135	0	3 (2.2%)	3 (2.2%)	IVUS 5%/OCT 20%	
ABSORB FIRST	All-comers	800	0	2 (0.3%)	2 (0.3%)	OCT	
Azzalini et al.	All-comers	339	0	4 (1.2%)	4 (1.2%)	-	All-comer
EVERBIO II	All-comers	78	0	0	0	-	1.0%
GABI-R	All-comers	1536	7 (0.5%)	8 (0.5%)	15 (1.0%)	-	
Capodanno et al., GHOST-EU registry	All-comer	1189	5 (0.4%)	11 (0.9%)	16 (1.3%)	IVUS 14%/OCT 14%	
	Average F/U: 7.1 Months	8094	16 (0.2%)	50 (0.6%)	66 (0.8%)		

#1 Acute scaffold thrombosis: Proximal landing at plaque

Karanasos et al. Circ Intervention2015

#2 Early scaffold thrombosis: Overlap

Karanasos et al. Circ Intervention2015

#3. Acute scaffold thrombosis: Malapposition Jaguszewski et al. EHJ 80 yo male presenting with Non-STEMI

P

#4 Subacute scaffold thrombosis: Oversizing

Sabate et al. 2015 EHJ (TROFI II)

1st PCI Post **Device size 3.0** LAD Scaffold Proximal Dmax 1.9753 Distal Dmax 2.0492 Diameter **Over sizing**

10

15 Reference method: 0.51

Automatic

6 days Sub-acute Scaffold Thrombosis

Distal Dmax minus nominal scaffold size

(%)

15

The implantation of a "large" Absorb scaffold in a relatively small vessel had a higher risk of MACE at 1year. The selection of nominal scaffold size below the diameter of both proximal and distal Dmax might lead to a denser polymer surface pattern, which could be associated with MI after procedure.

diameter of Absorb)

Complete mismatch (Both Dmax < nominal

BRS failure: Imaging findings

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

3 criteria to judge acute disruption on OCT

Stacked Struts

Overhang Struts

Isolated & Centered Strut

Onuma et al. JACC int 2014

#1. Suspected Acute disruption: Cohort A Stented segment 35 10 15 **OCT before** A B C D Ε post dil K B D С Ξ * Post dilatation with a 3.5 mm compliant balloon at 18 atm С D B 42 days , after procedure A' 5 10 0 V Onuma et al. 1

mm

EI 2010

#2. Acute disruption and Late Thrombosis -161 days after implantation, 2 days after cessation of DAPT

Pre-procedure

E

Post-procedure

acute disruption at proximal edge

No thrombus at disruption site

Scaffold thrombosis on 161 days

<u>underexpansion</u> at mid scaffolded part (overlap)

Late scaffold thrombosis after DAPTdiscontinuation in overlapping BVS with underexpansion.

event

Thrombus at underexpansion site

Karanasos A et al. Circ Cardiovasc Interv 2015;8.

BRS failure: Imaging findings

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis – Late discontinuities (Intravascular or
 - intraluminal Dismantling)
- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

What is the reported incidence of very late thrombosis? Number (n=12 – denominator unknown)

Follow-up duration (months)

Imaging findings associated with Late/very late scaffold thrombosis

Reported imaging findings associated with Late/very late scaffold thrombosis	Ν
Malapposition	8
Discontinuity	5
Uncovered Struts	4
Under-expansion	3
Restenosis	1
Incomplete coverage	1

Criteria of late discontinuities are the same with acute disruption. But the findings should be absent at baseline and present at FUP

Stacked Struts, overhang struts or isolated centered strut

Onuma et al. JACC int 2014

Assessment of OCT late discontinuities in Cohort B1/B2

#1 VLST with Late discontinuity and Uncovered struts

The cause for thrombus formation was late scaffold strut discontinuity with the particular finding of a long scaffold strut freely floating in the lumen.

VLST at 19 months

Uncovered struts were frequently observed (10%) and the majority of struts were covered by thrombus.

#2 VLST at 2 years with late discontinuities

Karanasos A et al. Eur Heart J 2014;35:1781.

Post-procedure

Scaffold thrombosis

late discontinuity

thrombus

BRS complications: Imaging findings

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis/ Neoatherosclerosis
- Others (Aneurysm)

Overview of Restenosis/ID-TLR

last update: 5th Feb 2016

NA: not available

			Binary restenosis	
Trial name	Follow-up period (M)	Patient number	(%)	ID-TLR (%)
			(in-segment)	
ABSORB Japan	12	272	1.9	2.6
EVERBIO II	9	75	10.7	10.0
TROFI II	6	95	0.0	1.1
Absorb Cohort B	36	101	5.9	7.0
ABSORB II	12	335	NA	1.2
ABSORB EXTEND	12	512	NA	1.8
GHOST-EU	6	1189	NA	2.5
BVS-RAI	7.3	122	NA	4.1
BVS EXAMINATION	12	290	NA	1.7
BVS STEMI first	1	49	0.0	0.0
AMC registry	6	135	5.0	6.3
ASSURE registry	12	183	2.8	2.8
GABI-R (euroPCR 2015)	1	1536	NA	NA
POLAR ACS	12	100	0.0	1.0
Prague 19	6	40	0.0	2.5
ABSORB III	12	1322	0.0	3.0
ABSORB China	12	238	3.9	2.5
CTO ABSORB	6	35	5.7	0.0
Robaei et al	12	100	3.0	4.0
Costopoulos et al CCI	6	92	NA	3.3
Costpoulos et al CRM	12	108	NA	0.9
Gori et al	12	75	4.0	9.3
Jagszewski et al	4.9	98	NA	2.0
Kajiya et al	1.77	11	NA	NA
Mattesini et al	8.5	35	NA	0.0
Ojeda et al	13	42	4.8	2.4
Weibe et al	4.4	25	0.0	0.0

	Total population	Average FUP	Weighted average
Binary Restenosis	1565	11.8 M	3.21%
ID-TLR	5668	10.3 M	2.73%

Early (<6M), late (6-12M) and very late (>12M) angiographic scaffold restenosis in the ABSORB cohort B trial

- Myocardial bridge
- Proximal geographic miss
- Malapposition

 Late restenosis and scaffold area

Nakatani et al. Eurointervention, Serruys et al. JACC, Serruys, Onuma et al. Circulation, Ormiston et al. Circ Intervention

#1. Late ISR day 354 due to neointimal hyperplasia

Type 1C ISR (QCA MLD: 0.79 mm, %DS: 64.0%, LL: 1.58 mm)

Nakatani et al. El 2014

Circularity of the scaffold was maintained throughout the pullback.

#2. Very late ISR on day 833 in Absorb Cohort B

Nakatani et al. El 2014

Type 1B ISR at the distal margin of the scaffold segment QCA MLD: 0.72 mm, %DS: 63.7% and LL: 1.38 mm)

Neoatherosclerosis

Vascular Scaffold

۲

Andrea Mangiameli, MD, * Yohei Ohno, MD, * Guilherme F. Attizzani, MD, *| Davide Capodanno, MD, PaD, * Corrado Tamburino, MD, PaD*|

Neoatherosclerosis as the Cause of

Late Failure of a Bioresorbable

D: Neointimal rupture (white arrow) with mural thrombus (red asterisk)

E: Highly attenuating area

F: Marked shadowing of the scaffold struts

G: Normal pattern of neointima

BRS complications: Imaging findings

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis/ Neoatherosclerosis
- Evagination/ Aneurysm

Evagination at 12 M FUP

Out of 90 pts, 55 (54%) of the BVS (50(56%) of the patients) had at least one evagination (6.1+6.2 evaginations per BVS).

Gori et al. EHJ 2015

Case of Aneurysm

Mechanism: Unknown

However, implies localized inflammatory response with involvement of metalloproteinase.

Case of Aneurysm

Mechanism: Unknown

However, implies localized inflammatory response with involvement of metalloproteinase.

Nakatani et al. Circulation 2014

Conclusion

- Malapposition, scaffold edge landing on plaque, overlap, devicevessel size mismatch and underexpansion are frequently observed in cases of early scaffold thrombosis.
- Acute disruption is caused by overexpansion and could relate to scaffold thrombosis.
- Late discontinuities are common and benign phenomenon associated with bioresorption (40%). Late discontinuities are however frequently observed in cases of late/very late scaffold thrombosis. It remains unclear whether it is the cause of thrombosis or not. Further research is needed to investigate what impacts the differential outcomes of late discontinuities.
- Reported causes of restenosis in the Absorb are not different from those of drug-eluting metallic stent.
- OCT-defined neo-atherosclerosis warrants further investigation.
- Due to a lack of systematic and serial imaging, it remains unclear how much additional risks will be associated with each imaging abnormality.

BRS Failure: Insights from Imaging

Yoshinobu Onuma^{1,2} Yohei Sotomi³ Patrick W. Serruys⁴

 Thorax Centre Erasmus MC, Rotterdam, 2 Cardialysis B.V., Rotterdam
 Academisch Medisch Centrum, Amsterdam
 International Centre for Cardiovascular Health, Imperial College, London

BRS failure: imaging

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

ABSORB 1-Year Meta-analysis

ABSORB II, ABSORB III, ABSORB Japan, ABSORB China Device Thrombosis (Def/Prob) (pooled)

Stone et al. Lancet 2016

What is the reported rate of Early Scaffold

Thrombosis?

Ishibashi et al. EuroIntervention Updated

Study	Indication	Ν	Acute ST N (%)	Subacute ST, N (%)	Early ST, N (%)	Imaging	
Abizaid et al, ABSORB EXTEND	SAP	512	0	2 (0.4%)	2 (0.4%)	OCT 14 cases	
Serruys et al., ABSORB B	SAP	101	0	0	0	IVUS/OCT	
Onuma et al., ABSORB A	SAP	30	0	0	0	IVUS/OCT	
CORONARY CTO	SAP	35	0	0	0	IVUS/OCT	
Serruys et al., ABSORB II	SAP / UAP	335	1 (0.3)	1 (0.3)	2 (0.6)	IVUS	SAP/UAP
ASSURE registry	SAP / UAP	183	0	0	0	-	0.3%
BVS EXPAND	SAP / UAP	200	0	0	0	-	
ABSORB Japan	SAP / UAP	226	0	3 (1.1%)	3 (1.1%)	IVUS/OCT	
ABSORB III	SAP / UAP	1322	2 (0.2%)	12 (0.9%)	14 (1.1%)	-	
ABSORB China	SAP / UAP	238	0	1 (0.4%)	1 (0.4%)	-	
Gori et al	ACS	150	1 (0.7%)	1 (0.7%)	2 (1.4%)	-	ACS
POLAR ACS	ACS	100	0	0	0	-	1.0%
Kajiya et al.	STEMI	11	0	0	0	-	
Diletti et al., BVS STEMI	STEMI	49	0	0	0	OCT	
Kocka et al., PRAGUE-19	STEMI	41	0	1 (2.4%)	1 (2.4%)	OCT	
Wiebe et al.	STEMI	25	0	0	0		STEMI
Ielasi et al., RAI registry	STEMI	74	0	1(1.4%)	1(1.4%)	OCT/IVUS 4.4%	1.5%
TROFI II	STEMI	95	0	1 (1.1%)	1 (1.1%)	OCT	
BVS Examination	STEMI	290	NA	NA	6 (2.1%)	-	
Kraak et al., AMC Single Centre	All-comers	135	0	3 (2.2%)	3 (2.2%)	IVUS 5%/OCT 20%	
ABSORB FIRST	All-comers	800	0	2 (0.3%)	2 (0.3%)	OCT	
Azzalini et al.	All-comers	339	0	4 (1.2%)	4 (1.2%)	-	All-comer
EVERBIO II	All-comers	78	0	0	0	-	1.0%
GABI-R	All-comers	1536	7 (0.5%)	8 (0.5%)	15 (1.0%)	-	
Capodanno et al., GHOST-EU registry	All-comer	1189	5 (0.4%)	11 (0.9%)	16 (1.3%)	IVUS 14%/OCT 14%	
	Average F/U: 7.1 Months	8094	16 (0.2%)	50 (0.6%)	66 (0.8%)		

#1 Acute scaffold thrombosis: Proximal landing at plaque

Karanasos et al. Circ Intervention2015

#2 Early scaffold thrombosis: Overlap

Karanasos et al. Circ Intervention2015

#3. Acute scaffold thrombosis: Malapposition Jaguszewski et al. EHJ 80 yo male presenting with Non-STEMI

P

Assessment of OCT late discontinuities in Cohort B1/B2

₀₉₇₉₆₉₀₀₃ BL	6M	2Y	BL	1Y	3Y
		CARACTER AND	097969007		
097969004			100353014	MARKE SHOW	
100353001		關聯節的	100353015		NUE 2171/M
100353002			102921007	ANATHING AND	
100353003		UTANIDAHANG ANGGEGGGGGG	102921008	Poor Study	ALEE ALEE ALEE ALEE ALEE ALEE ALEE ALEE
100353005			102921009		
		HERDEN KURT	106255004 LAD		
100353007			106256004 RCA		
10353008			106256005		
10035301			106256006		
145896001			115782001		
115896002			115782002		
Conort B2 BL	1Y	ЗҮ	115782004	MANNER HIS	AND
097969005	なななない	an a	115782006		
097969006			115782007		

#4 Subacute scaffold thrombosis: Oversizing

Sabate et al. 2015 EHJ (TROFI II)

1st PCI Post **Device size 3.0** LAD Scaffold Proximal Dmax 1.9753 Distal Dmax 2.0492 Diameter **Over sizing**

10

15 Reference method: 0.51

Automatic

6 days Sub-acute Scaffold Thrombosis

BRS failure: imaging

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

3 criteria to judge acute disruption on OCT

Stacked Struts

Overhang Struts

Isolated & Centered Strut

Onuma et al. JACC int 2014

#1. Suspected Acute disruption: Cohort A Stented segment 35 10 15 **OCT before** A B C D Ε post dil K B D С Ξ * Post dilatation with a 3.5 mm compliant balloon at 18 atm С D B 42 days , after procedure A' 5 10 0 V Onuma et al. 1 EI 2010

mm

#2. Acute disruption and Late Thrombosis -161 days after implantation, 2 days after cessation of DAPT

Pre-procedure

E

Post-procedure

acute disruption at proximal edge

Scaffold thrombosis on 161 days

No thrombus at disruption site

<u>underexpansion</u> at mid scaffolded part (overlap)

Late scaffold thrombosis after DAPTdiscontinuation in overlapping BVS with underexpansion.

event

Thrombus at underexpansion site

Karanasos A et al. Circ Cardiovasc Interv 2015;8.

#3. Worsening of acute disruption by imaging follow-up Scaffolding PRE

RVD 2.24

At baseline, acute disruption was observed in a few cross sections (small disruption)

Onuma et al. JACC intervention 2014

#3. Worsening of acute disruption by imaging follow-up 6M FUP (Asymptomatic)

OCT

Lifting of a strut at 6M - Presumably iatrogenic

Onuma et al. JACC intervention 2014

#3. Worsening of acute disruption by imaging follow-up
 Iatrogenic lifting of a strut at 6M and subsequent formation of tissue arch at
 24M

BRS failure: imaging

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

 Late discontinuities (Intravascular or

intraluminal Dismantling)

- Restenosis
- Neoatherosclerosis
- Others (Aneurysm)

What is the reported incidence of very late thrombosis? Number (n=12 – denominator unknown)

Follow-up duration (months)

Imaging findings associated with Late/very late scaffold thrombosis

Reported imaging findings associated with Late/very late scaffold thrombosis	Ν
Malapposition	8
Discontinuity	5
Uncovered Struts	4
Under-expansion	3
Restenosis	1
Incomplete coverage	1

Criteria of late discontinuities are the same with acute disruption. But the findings should be absent at baseline and present at FUP

Stacked Struts, overhang struts or isolated centered strut

Onuma et al. JACC int 2014

#2 VLST with Late discontinuity and Uncovered struts

The cause for thrombus formation was late scaffold strut discontinuity with the particular finding of a long scaffold strut freely floating in the lumen.

VLST at 19 months

Uncovered struts were frequently observed (10%) and the majority of struts were covered by thrombus.

#3 VLST at 2 years with late discontinuities

Karanasos A et al. Eur Heart J 2014;35:1781.

Post-procedure

Scaffold thrombosis

late discontinuity

thrombus

#4 VLST at 2 years with late discontinuities

Baseline pre-procedure

Räber et al. JACC 2015, Courtesy of Dr. Sabate

VLScT 21 months

VLScT after thrombectomy

#3 VLST at 2 years with late discontinuities

BRS failure: imaging

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis/ Neoatherosclerosis
- Others (Aneurysm)

#1. Late ISR day 354 due to neointimal hyperplasia

Type 1C ISR (QCA MLD: 0.79 mm, %DS: 64.0%, LL: 1.58 mm)

Nakatani et al. El 2014

Circularity of the scaffold was maintained throughout the pullback.

#2. Very late ISR on day 833 in Absorb Cohort B

Nakatani et al. El 2014

Type 1B ISR at the distal margin of the scaffold segment QCA MLD: 0.72 mm, %DS: 63.7% and LL: 1.38 mm)

Neoatherosclerosis

Vascular Scaffold

۲

Andrea Mangiameli, MD, * Yohei Ohno, MD, * Guilherme F. Attizzani, MD, *| Davide Capodanno, MD, PaD, * Corrado Tamburino, MD, PaD*|

Neoatherosclerosis as the Cause of

Late Failure of a Bioresorbable

D: Neointimal rupture (white arrow) with mural thrombus (red asterisk)

E: Highly attenuating area

F: Marked shadowing of the scaffold struts

G: Normal pattern of neointima

BRS failure: imaging

- Early Thrombosis
- Acute disruption
- Very late Scaffold thrombosis

Late discontinuities (Intravascular or intraluminal Dismantling)

- Restenosis/ Neoatherosclerosis
- Evagination/ Aneurysm

Evagination at 12 M FUP

Out of 90 pts, 55 (54%) of the BVS (50(56%) of the patients) had at least one evagination (6.1+6.2 evaginations per BVS).

Gori et al. EHJ 2015

Μ

Case of Aneurysm

Mechanism: Unknown

However, implies localized inflammatory response with involvement of metalloproteinase.

Case of Aneurysm

Mechanism: Unknown

However, implies localized inflammatory response with involvement of metalloproteinase.

Nakatani et al. Circulation 2014

Conclusion

- Malapposition, scaffold edge landing on plaque, overlap, device-vessel size mismatch and underexpansion are frequently observed in cases of early scaffold thrombosis.
- Acute disruption could relate to scaffold thrombosis. It can be worsened by follow-up procedure.
- Late discontinuities are frequently observed in cases of late/very late scaffold thrombosis.
- It appears that the fate of late discontinuities varies from scaffold thrombosis to no events (well covered). Further research is needed to investigate what impacts the differential outcomes of late discontinuities.
- Reported causes of restenosis in the Absorb is not different from those of drug-eluting metallic stent.
- Anecdotal case of OCT-defined neo-atherosclerosis warrants further investigation.
- Due to a lack of systematic and serial imaging, it remains unclear how much additional risks will be associated with each imaging abnormality.