Asymptomatic Carotid Stenoses: Interventional, Surgical or Medical Management

Robert M. Bersin, MD, MPH, FACC, FSCAl Medical Director, Endovascular Services Swedish Medical Center, Seattle, WA

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Robert M. Bersin, MD

Abbott Vascular C, P, SB Ablative Solutions El Boston Scientific AB, C, El, P, SB Cook Medical, Inc. C, P Med Alliance SA, AB, El Medtronic, Inc. C, P Omeros Corp, El QT Vascular, El Transverse Medical AB, El, SO Vatrix Medical El W.L. Gore C, P

AB: Advisory Board C: Consulting Relationship EI: Equity Interest GS: Grant Support P: Proctor or Training Course Sponsorships SB: Speakers Bureau SE: Spouse Employee SO: Stock Options or Positions

Carotid Artery Disease: Causes of Stroke by Lesion Severity

NASCET Trial – Medically Treated Patients, 5-year Risk Cardioembolic Lacunar Large Artery

Barnett HJM, et al JAMA 2000; 283: 1429-1436

Asymptomatic Carotid Stenosis Rate of Progression and Risk of Stroke

Risk of Cerebral Events by Lesion Severity Duplex Ultrasonography

Chambers BR et al *N Engl J Med* 1986; 315: 860-865

Echolucent Carotid Plaques and Clinical Events

Tromsø Study

Echolucent Plaque

Graph of event-free survival for subjects without stenosis and subjects with stenosis according to plaque echogenicity. A, Subjects without stenosis; B, subjects with echogenic and predominantly echogenic plaques; C, subjects with predominantly echolucent plaques; and D, subjects with echolucent plaques. Probability values refer to comparison between group B, C, or D vs control subjects (A).

Mathiesen EB et al Circulation 2001; 103: 2171-2175

Carotid Plaque Characteristics and Cerebrovascular Events

Carotid stenoses ≥50% (n=62)

Echolucent plaque

Plaque progression

Symptomatic plaque

3-T MRI (TOF, special dark-blood weighted non-contrast and contrast-enhanced T1 and T2 images)

Marie-Luise Mono et al Cerebrovasc Dis 2012; 34: 343-350

Asymptomatic Carotid Artery Disease 5-Year Risk of Stroke - ACST Randomized Trial

5-year absolute stroke risk reduction: <80% stenosis (mean 69%) 7.43% 80-99% stenosis (mean 87%) 6.36%

ACST Collaborative Group Lancet 2004; 363: 1491-1502

Medical Management of Asymptomatic Carotid Artery Disease in ACST

ACST Collaborative Group *Lancet* 2004; 363: 1491-1502

Carotid Artery Disease: Cholesterol Therapy and Stroke Risk

Meta-Analysis of Statin Trials for CV Event Risk Reduction

Amarenco P et al Lancet Neurology 2009; 8(5): 453-463

Carotid Artery Disease: ACE-I Therapy and Stroke Risk

Perindopril in Symptomatic Patients With Prior TIA/Stroke

PROGRESS Collaborative Group Lancet 2001;358:1033-1041

Asymptomatic Carotid Artery Disease 10-Year Risk of Stroke - ACST Randomized Trial

Absolute benefit of revascularization on stroke risk reduction in patients on lipid lowering therapy: 5-years 3.4% p=0.0005 10-years 5.8% p=0.002

ACST Collaborative Group Lancet 2010; 376: 1074-84

Modern Medical Treatment with or w/o CEA for Asymptomatic Carotid Stenoses

Randomized trial of 55 pts with 70-79% carotid stenosis

Kolos I et al *J Vasc Surg* 2015; 62: 914-922

Carotid Revascularization for Primary Prevention of Stroke Trial (CREST-2)

>70% Asymptomatic Carotid Stenoses with Parallel Randomizations

Sapphire Trial Randomized Patients 1-Year Events

Yadav JS et al *N Eng J Med* 2004; 351: 1493-1501

Meta-Analysis of 30-Day Outcomes from SPACE, EVA-3S and ICSS

	CAS		CEA				Risk ratio (95% CI)			Interaction p value
	Events	Total	Events		Total					•••••••
Age (years)		1-201		-	22.55					
<70	22 (2-5%)	869	30 (3.6%)	843				0.71 (0.41-1.22)	0.0071
≥70	60 (7.0%)	856	34 (3.9%)	865			()	1.78 (1.18-2.68)	0.00/1
Sex										
Male	56 (4.6%)	1230	42 (3.4%)	1232				1.33 (0.90-1.97)	0.66
Female	26 (5.3%)	495	22 (4	4.6%)	476		-	•	1.14 (0.66-1.98)	
Type of most recent ipsilateral ischaemic	event before rand	omisatio	n	887 - 88					1000	
Retinal ischaemia	7 (2.3%)	310	9 (3-0%)	297	1		<u> </u>	0-74 (0-28-1-97)	
Transient ischaemic attack	31 (5.3%)	589	24 (4-0%)	601				1.32 (0.78-2.22)	0.49
Hemispheric stroke	44 (5.4%)	813	30 (3.8%)	797			+•	1.43 (0.91-2.25)	10.000
Degree of ipilateral carotid stenosis			0.28 .00	00 - 8 3					9767 R. 1938	
Moderate (50-69%)	11 (3.3%)	332	10 ((3-1%)	327		-	•	1.10 (0.47-2.55)	0.73
Severe (70-99%)	71 (5.1%)	1393	54 (3.9%)	1381			+•-	1.29 (0.91-1.82)	
Contralateral severe carotid stenosis or o	occlusion		05:0005					198		
No	62 (4.6%)	1340	44 ((3.3%)	1341				1-41 (0-97-2-06)	1200
Yes	9 (3.8%)	235	10 (4.3%)	235		0	•	0-91 (0-38-2-19)	0.37
						-	1	1 1	7	
						0-2	0.5	1 2	5	
							CEA worse	CAS worse		

Figure 5: Treatment risk ratios of disabling stroke or death within 120 days of randomisation in selected patient subgroups

Data are number or number (%), unless otherwise indicated. Percentages are number of events divided by number of patients. Analysis was by intention to treat. Dots and horizontal bars represent treatment risk ratios and 95% CIs, respectively, within subgroups, with carotid endarterectomy (CEA) as the reference group, on a log scale. Risk ratios and interaction p values (categorical interaction) were adjusted for source trial. Patients with missing subgroup data were excluded from subgroup analysis (for details of missing data see webappendix pp 2–4). CAS=carotid stenting.

Carotid Stenting Trialists' Collaboration Lancet 2010; 376: 1062–1073

CREST Trial

Primary endpoint:

Periprocedural (30-day) stroke, myocardial infarction, or death plus ipsilateral stroke within the ensuing 4 years (P=NS)

Brott TG et al N Engl J Med 2010; 363(1):11-23

CREST Trial 10-Year Results

Brott TG Feb 18, 2016

ACT-1 Randomized Trial 5-year Results

Asymptomatic Carotid Stenoses

Rosenfield K et al *N Engl J Med* 2016; 374: 1011-1020

POD Meta-analysis Overall 30-day Event Rates

Bersin RM et al Cath Cardiovasc Interv 2012; 80: 1072-1078

POD Meta-analysis Independent Risk Predictors

Odds of Baseline Characteristics to Predict Composite MACCE

A contralateral occlusion also does not predict device intolerance

Bersin RM et al *Cath Cardiovasc Interv* 2012; 80: 1072-1078

ROADSTER-Transcarotid Stenting with Dynamic Flow Reversal

Inclusion criteria	$\frac{No. (\%)}{(N = 141)}$
Anatomic	
Contralateral carotid occlusion	11 (7.8)
Tandem stenosis >70%	1(0.7)
High cervical carotid artery stenosis	42 (29.8)
Restenosis after CEA	29 (20.6)
Hostile neck	22 (15.6)
Bilateral carotid artery stenosis requiring treatment	6 (4.3)
Physiologic	
Age >75 years	66 (46.8)
>2 vessel CAD and history of angina	15 (10.6)
History of angina	2(1.4)
CCF NYHA functional class III/IV	1(0.7)
LVEF < 30%	2(1.4)
MI >72 hours and <6 weeks before the procedure	1(0.7)
Severe COPD	6 (4.3)
Permanent contralateral CNI	0
Chronic renal insufficiency	1 (0.7)

Events \leq 30 days of the index procedure	
Patients who died, No. (%)	2(1.4)
Patients who had a stroke, No (%)	2(1.4)
Patients who had an MI, No. (%)	1 (0.7)

Kwolek CJ et al *J Vasc Surg* 2015; 62: 1277-1235

Conclusions

- Optimal medical management of carotid artery disease includes antiplatelet monotherapy, statins and ACE-1 inhibitors.
- Symptomatic lesions have a higher incidence of neurologic events over the ensuing 5 years than asymptomatic lesions.
- Asymptomatic plaques with echolucent cores and/or rapid progression behave like symptomatic lesions and should be treated aggressively.
- CAS is superior to endarterectomy in high surgical risk patients (SAPPHIRE) and equivalent to endarterectomy in standard risk patients (CREST, ACT-1).

Conclusions

- There is an interaction suggested for age when filter EPDs are used such that the elderly trend to fare better with endarterectomy, and the younger fare better with CAS (SPACE, EVA-3S, ICSS and CREST).
- Symptomatic status is not a risk predictor of MACE with CAS when proximal protection devices are used.
- Carotid stenting with the Roadster device may provide an attractive alternative for patients who are not ideal candidates for either CEA or CAS with filter EPDs.
- Whether revascularization is superior to best medical management in asymptomatic patients is being addressed in the CREST-2 trial.