

Transcatheter Valve-In-Valve Implantation for Failed Aortic and Mitral Bioprostheses

Jian (James) Ye, MD, FRCSC

Clinical Professor Division of Cardiovascular Surgery St. Paul's Hospital and Vancouver General Hospital University of British Columbia, Vancouver, Canada

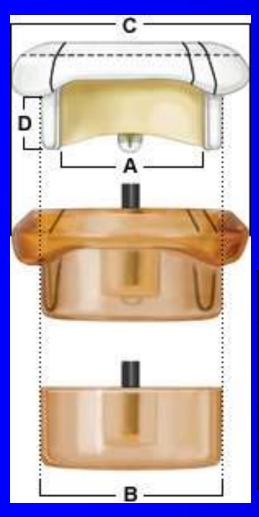
TCTAP 2016, Seoul, Korea April 26th-29th, 2016

Disclosure Statement of Financial Interest

Consultant: Edwards Lifesciences JC Medical Inc.

Transcatheter Valve-in-Valve

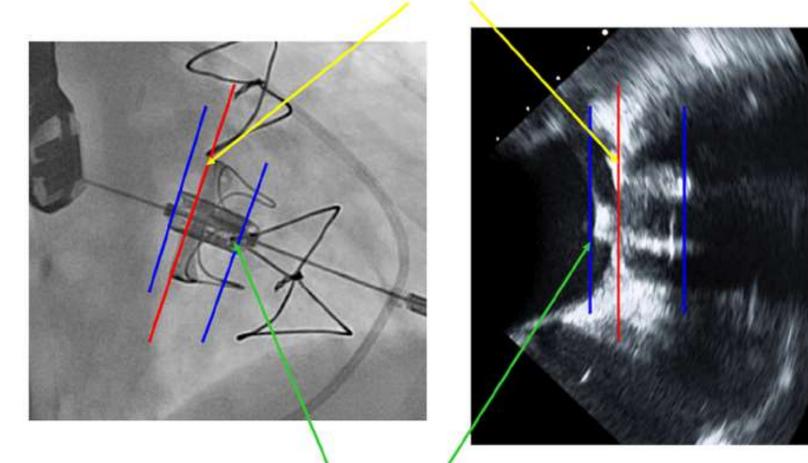
Surgical Valve



Edwards SapienTM Valve

Valve-In-Valve

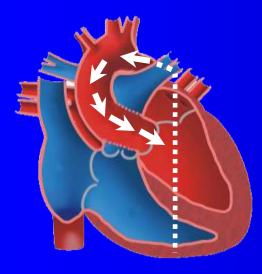
Mitral Pericardial Tissue Valve (Model 7300TFX)



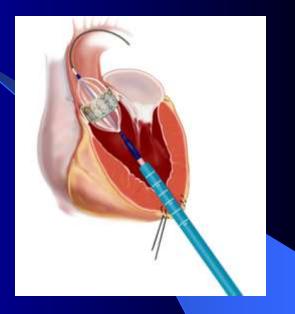
A Stent diameter (wireform	
B Tissue annulus diameter	
C External sewing ring diar	neter
D Anterior effective profile	

Size	25 mm	27 mm	29 mm	31 mm	33 mm
Α	25	27	29	31	31
B	28	29.5	31.5	33.5	<mark>33.5</mark>
С	36	38	40	42	<mark>44</mark>
D	7	7.5	8	8.5	8. <mark>5</mark>

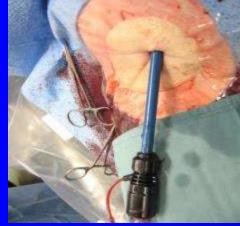
Positioning of Transcatheter Valve

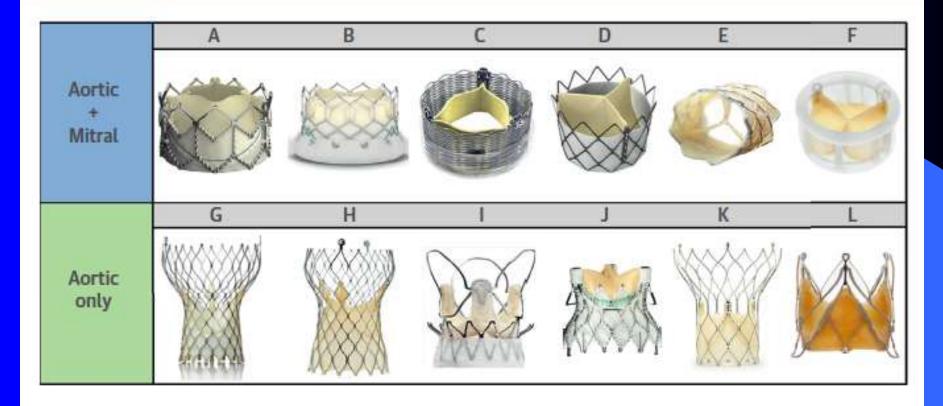

Surgical Valve

Transcatheter Valve Stent

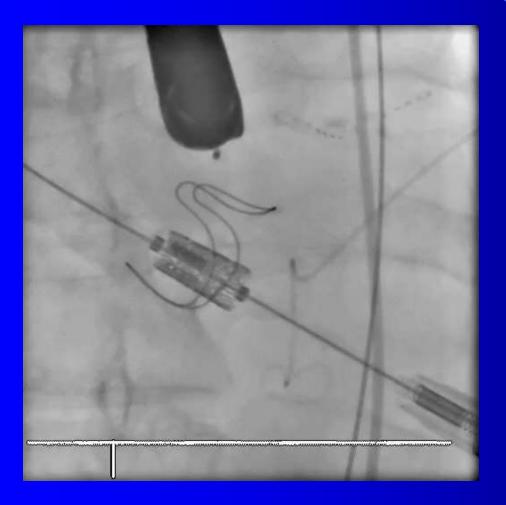

Ye J. J Thorac Cardiovasc Surg 2013;145:1554-62

Approaches Aortic Valve-in-Valve

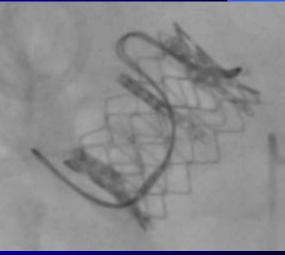



Transapical

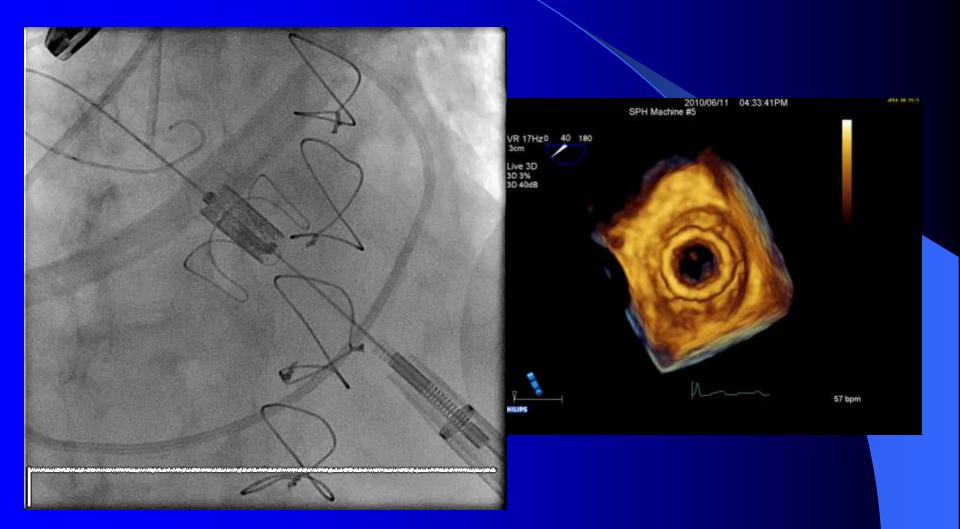
Transarterial


Transcatheter Valves Used for Valve-in-Valve

Transcatheter Valves Used for Valve-in-Valve Procedures



Paradix JM, et al. J Am Coll Cardiol 2015;66:2019-37


Aortic Valve-in-Valve

Mitral Valve-In-Valve

Transcatheter Aortic and Mitral Valve-in-Valve Implantation for Failed Surgical Bioprosthetic Valves

An 8-Year Single-Center Experience

Jian Ye, MD,* Anson Cheung, MD,* Michael Yamashita, MD,* David Wood, MD,† Defen Peng, PHD,‡ Min Gao, MD, PHD,‡ Christopher R. Thompson, MD,† Brad Munt, MD,† Robert R. Moss, MD,† Philipp Blanke, MD,§ Jonathon Leipsic, MD,§ Danny Dvir, MD,† John G. Webb, MD†

ABSTRACT

OBJECTIVES We report our 8-year experience in transcatheter aortic and mitral valve-in-valve (VinV) implantation.

BACKGROUND Feasibility and good early outcomes associated with transcatheter aortic and mitral VinV implantation into failed surgical bioprostheses have been confirmed, but the mid-term and long-term outcomes of transcatheter aortic and mitral VinV is unknown.

METHODS A total of 73 patients with aortic (n = 42) and mitral (n = 31) bioprosthetic valve dysfunction underwent transcatheter VinV implantation between April 2007 and December 2013. Edwards balloon-expandable transcatheter valves (Edwards Lifesciences Inc., Irvine, California) were used. Median follow-up was 2.52 years with a maximum of 8 years.

J Am Coll Cardiol Intv 2015;8:1735-44

	All (n = 73)	Aortic (n = 42)	Mitral (n = 31)
Age, yrs	79.7 ± 9.4	$\textbf{80.5} \pm \textbf{9.8}$	$\textbf{78.7} \pm \textbf{8.8}$
Male	41 (56.2)	28 (67.7)	13 (42.0)
Diabetes mellitus	17 (23.3)	10 (23.8)	7 (22.6)
Coronary artery disease	45 (61.6)	29 (69.0)	16 (51.6)
PASP ≥60 mm Hg	20 (27.4)	7 (16.7)	13 (41.9)
Coronary artery bypass grafting	32 (43.8)	19 (45.2)	13 (41.9)
NYHA functional class III or IV	69 (94.5)	39 (92.9)	30 (96.8)
COPD (moderate + severe)	11 (15.1)	4 (9.5)	7 (22.6)
Cerebrovascular accident	17 (23.3)	7 (16.7)	10 (32.3)
Surgical valve size <23 mm	8 (11.0)	8 (19.0)	0 (0.0)
Peripheral vascular disease	17 (23.3)	13 (31.0)	4 (12.9)
Left ventricular ejection fraction, %	60 (45, 65)	57.5 (47, 65)	60 (40, 65)
Creatinine 100-149 mmol/l	32 (43.8)	20 (47.6)	12 (38.7)
Creatinine ≥150 mmol/l	11 (15.1)	9 (21.4)	2 (6.5)
STS score, %	9.6 (5.9, 13.4)	9.6 (6.2, 11.4)	9.7 (5, 16.6)
Failed surgical valves			
Stenosis	34 (46.6)	22 (52.4)	12 (38.7)
Regurgitation	27 (37.0)	13 (31.0)	14 (54.2)
Mixed	12 (16.4)	7 (16.7)	5 (16.1)

Values are mean ± SD, n (%), or median (quartile 1, quartile 3).

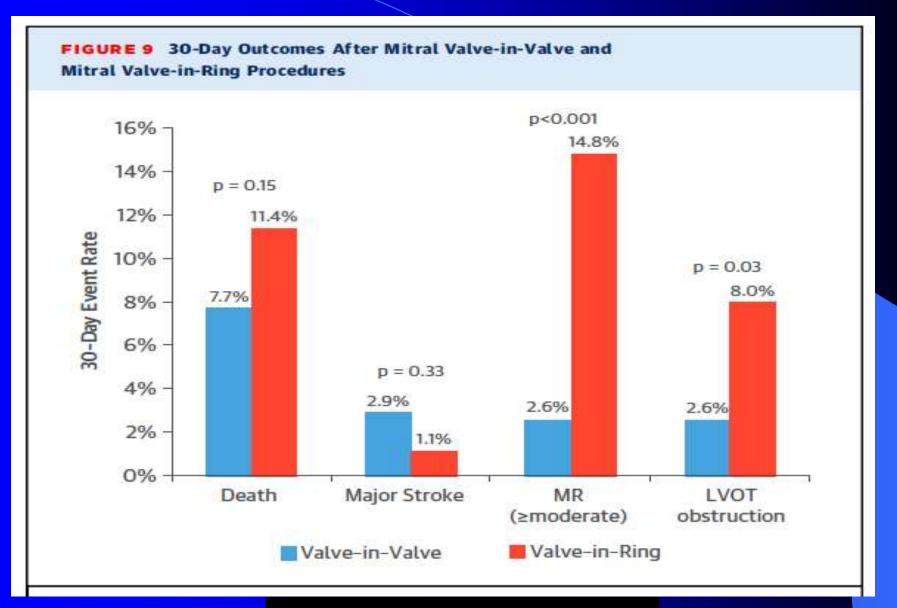
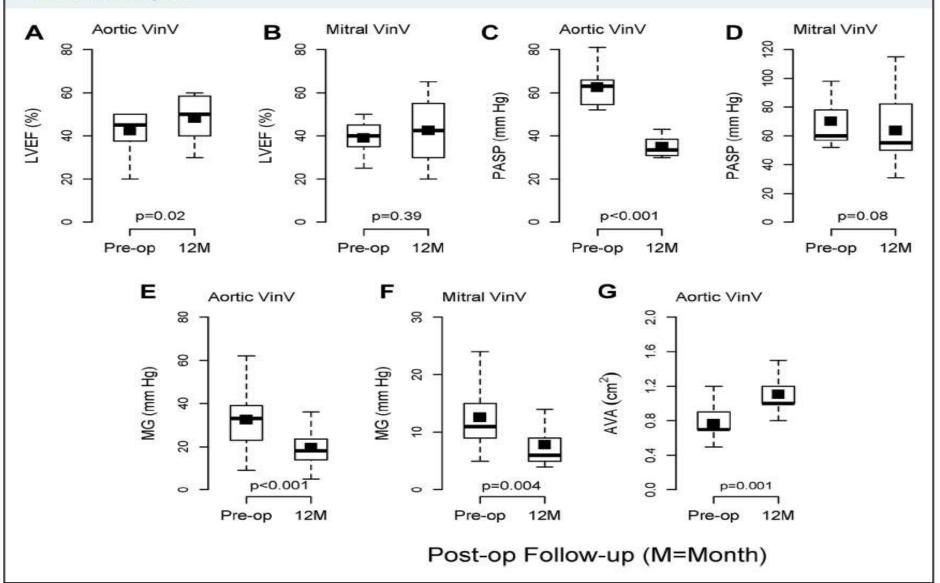
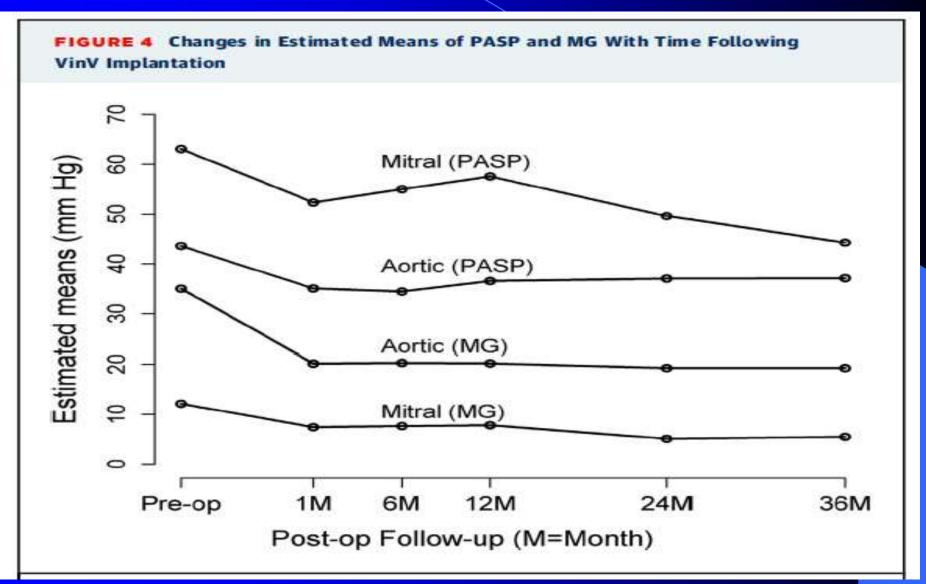

COPD = chronic obstructive pulmonary disease; NYHA = New York Heart Association; PASP = pulmonary artery systolic pressure; STS = Society of Thoracic Surgeons.

TABLE 2 Early and Late Complications

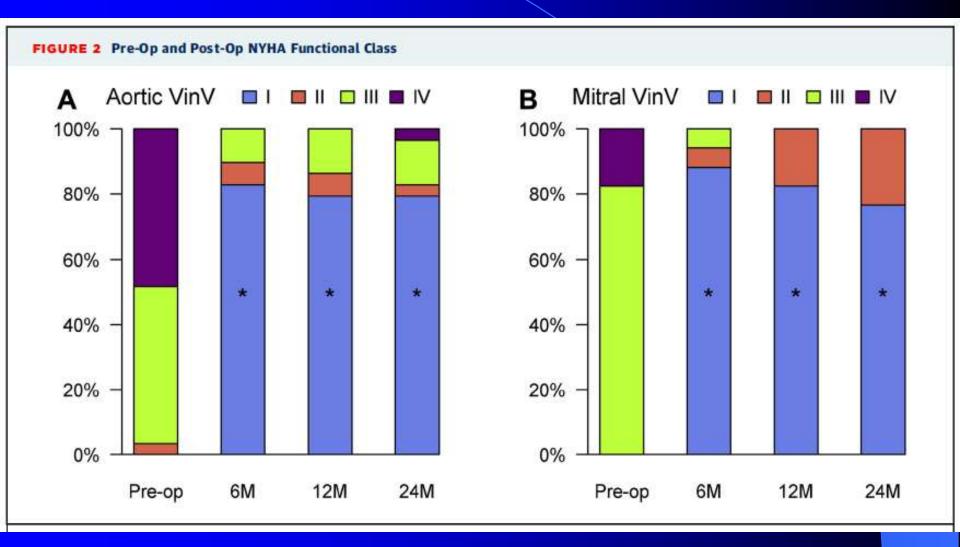
	Aortic VinV (n = 42)		Mitral VinV (n = 31)	
	30 Days	>30 Days	30 Days	>30 Days
Major bleeding (2-3 U PRBC)	0	0	6	0
Life-threatening bleeding (\geq 4 U PRBC)	2	1	1	0
Conversion to open surgery	1	0	0	0
Valve migration	0	0	0	1
ARF requiring hemodialysis	1	0	1	0
Myocardial infarction	0	0	0	0
Major vascular complication	0	0	0	0
Disabling stroke	0	0	1	1
Left main obstruction	1	0	0	0
Endocarditis	0	0	0	0
Valve thrombosis	0	2	0	2
Failed valve (structural)	0	1	0	0
THV-in-THV deployment	0	0	1	0
Permanent PM implantation	0	0	1	0

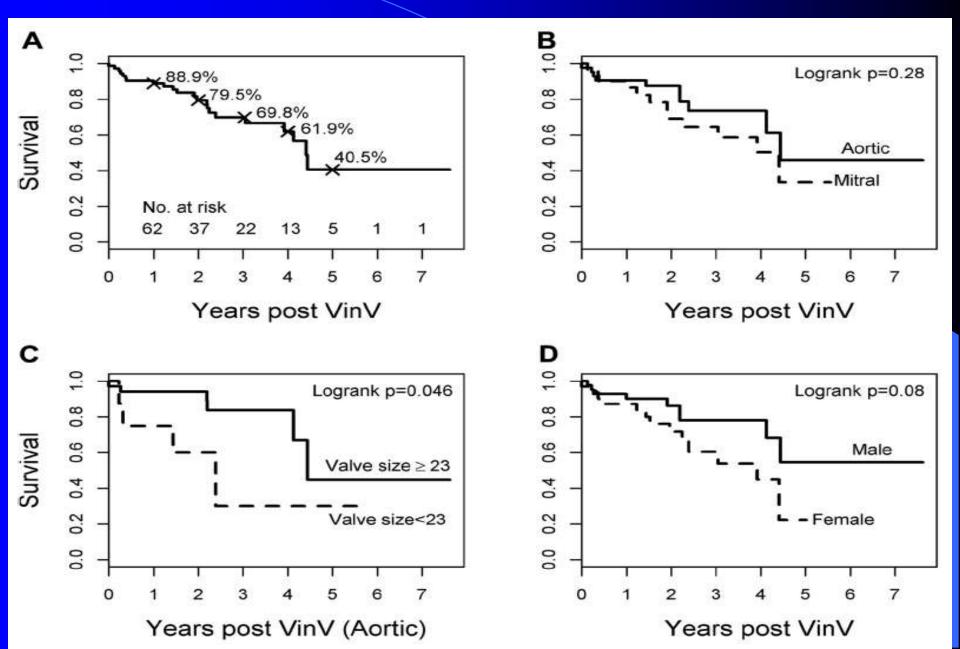
30-day all-cause mortality: 1.4%


Global VinV Registry


Dvir D. EuroPCR, May 21, 2015

Echocardiographic Outcomes


FIGURE 3 Echocardiographic Outcomes Following Either Aortic or Mitral VinV Implantation In Patients Who Had 12-Month Follow-Up Data


Changes in Estimated Means of Pulmonary Artery Systolic Pressure

Clinical Outcome

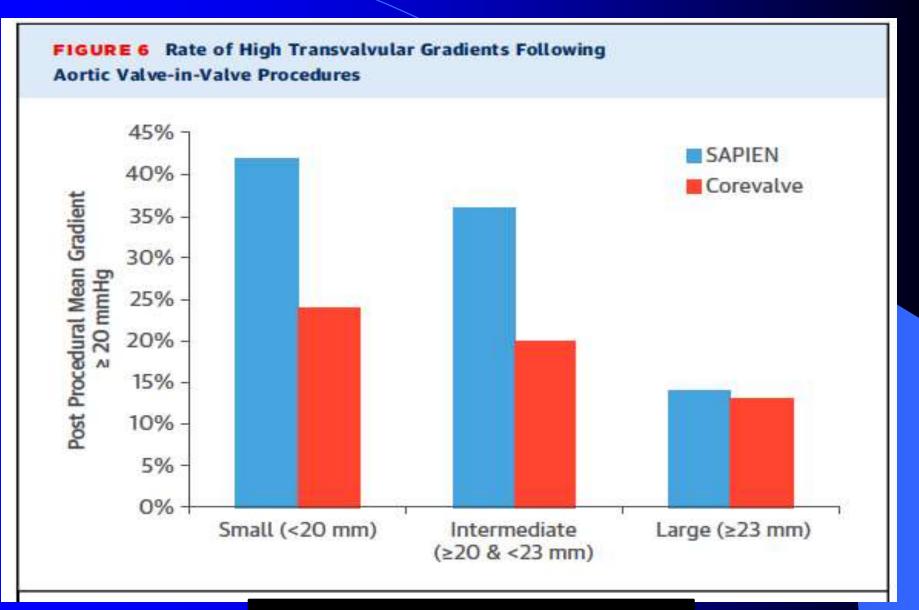
Mid-term Survival

Factors Influencing Survival

	Univariate Model		Multivariate Model		
	Hazard Ratio (95% CI)	p Value	Hazard Ratio (95% CI)	p Value	
Female	2.136 (0.904-5.049)	0.084	2.570 (0.983-6.719)	0.054	
PVD	1.466 (0.590-3.644)	0.411	3.153 (1.070-9.288)	0.037	
PASP ≥60 mm Hg	1.880 (0.775-4.556)	0.162	2.941 (0.963-8.982)	0.058	
LVEF <50%	1.459 (0.611-3.482)	0.395	2.658 (0.891-7.931)	0.080	
COPD (moderate + severe)	0.645 (0.151-2.763)	0.555			
CABG ± CAD	1.231 (0.479-3.160)	0.666			
Creatinine 100-149 mmol/L	1.116 (0.325-3.835)	0.862			
Creatinine ≥150 mmol/l	1.532 (0.593-3.958)	0.379			
DM	1.447 (0.530-3.948)	0.471			
CVA	2.001 (0.794-5.046)	0.142	2.956 (1.033-8.461)	0.043	

Factors Influencing Survival of Aortic VinV Patients

TABLE 4 Factors Influencing the Survival of Aortic VinV Patients (n = 42)

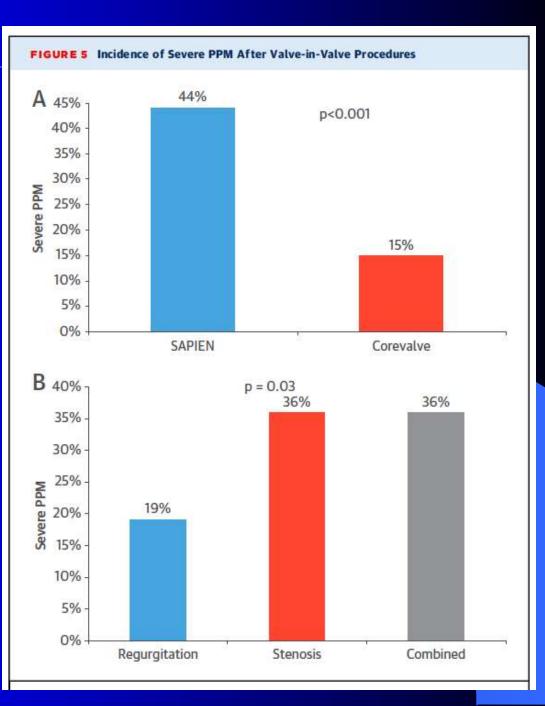

	Univariate Model		Multivariate Model		
	Hazard Ratio (95% CI)	p Value	Hazard Ratio (95% CI)	p Value	
Female	2.485 (0.614-10.07)	0.202			
PVD	2.752 (0.747-10.14)	0.128			
PASP ≥60 mm Hg	2.906 (0.692-12.21)	0.145			
LVEF <50%	1.742 (0.489-6.207)	0.392	2.945 (1.472-25.99)	0.049	
CABG ± CAD	0.784 (0.177-3.475)	0.749			
Creatinine 100-149 mmol/l	0.925 (0.127-6.749)	0.938			
Creatinine ≥150 mmol/l	2.126 (0.428-10.57)	0.357			
DM	2.601 (0.639-10.59)	0.182	4.779 (0.741-11.71)	0.125	
CVA	0.773 (0.995-6.304)	0.810			
Surgical valve size <23 mm	3.420 (0.951-12.30)	0.060	6.186 (1.001-22.82)	0.013	

Influence of Surgical Aortic Valve Sizes on Transcatheter Valve Hemodynamics

TABLE 5 Influence of Surgical Valve Sizes on Transcatheter Valve Hemodynamics in Aortic VinV Patients

Group	Surgical Valve Size (mm)	THV Size (mm)	Post-Op AVA (cm²)	Post-Op MG (mm Hg)
l (n = 8)	19 or 21	20 or 23	$\textbf{0.88} \pm \textbf{0.15}$	$\textbf{25.7} \pm \textbf{9.5}$
ll (n = 14)	23	23 or 26	$1.02\pm0.17^{*}$	$\textbf{22.5} \pm \textbf{7.9}$
III (n = 19)	25, 27, or 29	23, 26, or 29	1.35 \pm 0.27*†	15.8 \pm 6.2*†

Global VinV Registry



Dvir D, et al. JAMA 2014;312:162-70

<u>Global VinV</u> <u>Registry</u>

Severe PPM = Effective orifice area <0.65 cm2/m2

Dvir D. EuroPCR, May 21, 2015

- Safe procedure and high success rate
- Very low mortality and morbidity
- Good mid-term clinical and hemodynamic outcomes in high risk patients
- Initial implantation of surgical bioprostheses large enough (≥23mm) to allow for subsequent VinV implant with optimal hemodynamics and clinical outcome
- Consideration of surgical AVR with mechanical valves or root enlargement with bioprostheses in young patients with small aortic annulus.

Future Perspectives

- Valve-in-Valve will become a standard treatment for failed mitral and aortic (large sizes) bioprostheses in intermediate and high risk patients in the near future.
- Redo AVR with root enlargement should still be considered in intermediate and low-risk young patients with small sizes of failed aortic bioprostheses.

