Systematic Review and Meta-Analysis on Management Strategies for Asymptomatic Severe Aortic Stenosis

Philippe Généreux, MD

Associate Professor of Medicine, Interventional Cardiologist,
Hôpital du Sacré-Coeur de Montréal, Québec, Canada
Director, Angiographic Core Laboratory
Cardiovascular Research Foundation, New York, NY

April 26 ${ }^{\text {th }}$, TCTAP 2016, Seoul, Korea

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

- Edwards LifeSciences
- Consultant, Speaker Fees, Proctor

Recommendations and Levels of Evidence for Diagnosis, Follow-up, and Timing of Aortic Valve Replacement in Patients With Asymptomatic Severe Aortic Stenosis

Indications for aortic valve replacement

Left ventricular ejection fraction $<50 \%$	I, B	I, C
Undergoing other cardiac surgery	I, B	I, C
Symptoms on exercise test clearly related to aortic stenosis	I, B	I, C
Decreased exercise tolerance	IIa, B	IIa, C
Exercise fall in systolic blood pressure	IIa, B	IIa, C
Very severe AS $(P V \geq 5.0 ~ m / s ~[A C C] ;>5.5 \mathrm{~m} / \mathrm{s}[\mathrm{ESC}]$ and low surgical risk	IIa, B	IIa, C

3 Class I indications... 3 Class Ila indications... Level of evidence B or C No Randomized trial

Exercise testing	Ila, B	
Exercise echocardiography	Ila, B	

Follow-up

Echocardiography every 6-12 months 1, C
ACC = American College of Cardiology; AHA = American Heart Association; EACTS = European Association for Cardio-Thoracic Surgery; European ESC = European Society of Cardiology

ACC/AHA and ESC/EACTS Guidelines

If Stress test and Stress Echo normal:
Clinical and Echo follow-up 6-12 months ACC/AHA Class I

Why Early AVR In Asymptomatic Severe AS is Rarely Performed?

Sudden Death with
Asymptomatic AS:
~1\%/year

Peri-operative Mortality SAVR: ~2-3\%?

Asymptomatic Severe AS: Rationale for Early AVR

Pros

- Reduce irreversible myocardial damage and subsequent consequences
- Decreased operative risk for asymptomatic patients
- Presence of latent symptoms; AS progression highly variable; potential for a very rapid deterioration
- Risk of late (or too late) symptoms reporting
- Increase of STS with time...
- Death on waiting list
- Sudden death without preceding symptoms

Cons

- Mortality potentially low among a specific subset of low-risk and truly asymptomatic patients with normal stress test and stress echo
- Frequent follow-up could potentially identified patients ready for AVR in a timely fashion
- Inherent mortality and morbidity of AVR
- Long-term complication of AVR (anticoagulation, need for re-op, endocarditis, thrombosis, etc.

Practical Issues with "Watchful Waiting" Strategy

- Clinicians still have a fear of stress test with Severe AS patients; low penetration and underused
- Stress Imaging requires expertise and specific set-up that most community hospitals don't have
- Sub-optimal follow-up and Lost of follow-up are frequent
- Many sudden deaths occurred in Asx patients with no Class I indication of AVR and no preceding symptoms
- "Wishful Thinking" Strategy...

What is the Prevalence of Asymptomatic Severe AS?

- ~40-50\% of all Severe AS from major echo databases ${ }^{1,2,3}$
- ~10-20\% are bicuspid
- ~20-25\% have multiple valve disease, clinically significant CAD, prior AVR
- Isolated Asymptomatic Severe AS represents $\sim 25-30 \%$ of all Severe AS referred to Echo lab
- ~500,000 patients >65 years old in US ${ }^{4}$

What is the Prognosis of Asx Severe AS Patients?

๑tct2015

Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients With Asymptomatic Severe Aortic Stenosis

Philippe Généreux, MD, ${ }^{\text {a,b,c }}$ Gregg W. Stone, MD, ${ }^{\text {a,b }}$ Patrick T. O'Gara, MD, ${ }^{\text {d }}$ Guillaume Marquis-Gravel, MD, ${ }^{\mathrm{c}}$ Björn Redfors, MD, PHD, ${ }^{\text {b,e }}$ Gennaro Giustino, MD, ${ }^{\text {f }}$ Philippe Pibarot, DVM, $\mathrm{PHD},{ }^{\mathrm{g}}$ Jeroen J. Bax, MD, PHD , ${ }^{\text {h }}$ Robert O. Bonow, MD, ${ }^{i}$ Martin B. Leon, $\mathrm{MD}^{\mathrm{a}, \mathrm{b}}$

Systematic Review and Meta-Analysis

- MEDLINE, Embase, and Cochrane Central Register of Controlled Trials
- Severe AS asymptomatic patients
- >18 years old and reporting outcomes
- 503 articles
- 27 observational studies pertinent identified
- 4 studies with observational comparison AVR vs. Medical treatment; $N=2,486$ patients

Studies Comparing AVR vs. Observation in Asymptomatic Severe AS Patients; $\mathrm{N}=2,486$

Authors	AS definition	N	Age	Female	Follow-up (median)
Pellikka et al. 1990	Severe AS; Doppler PV $\geq 4 \mathrm{~m} / \mathrm{s}$	143 30 AVR 113 Medical	$\begin{aligned} & 72 \text { (mean) } \\ & 40 \text { to } 94 \end{aligned}$	38\%	AVR 21 m Medical 20 m
$\begin{aligned} & \text { Pai et al. } \\ & 2006 \end{aligned}$	Severe AS AVA $<0.8 \mathrm{~cm}^{2}$	$\begin{gathered} 338 \\ 99 \text { AVR } \\ 239 \text { Medical } \end{gathered}$	71 ± 15	49\%	3.5 y
Kang et al. 2010	Very severe AS AVA $\leq 0.75 \mathrm{~cm}^{2}$ AND PV $\geq 4.5 \mathrm{~m} / \mathrm{s}$ or a $M G \geq 50 \mathrm{mmHg}$	$\begin{gathered} 197: \\ 102 \text { AVR } \\ 95 \text { Medical } \end{gathered}$	63 ± 12	50\%	AVR 1265 d Medical 1769 d
Taniguchi et al. 2015	Severe AS AVA: $<1 \mathrm{~cm} 2$ MG: >40mmhg PV: $>4 \mathrm{~m} / \mathrm{s}$	$\begin{gathered} \text { 1808: } \\ 291 \text { AVR } \\ 1517 \\ \text { Medical } \end{gathered}$	$\begin{gathered} \text { AVR } \\ 71.6 \pm 8.7 \\ \text { Medical } \\ 77.8 \pm 9.4 \end{gathered}$	60\%	1361 d

All-Cause Mortality AVR vs. Medical Therapy in Asymptomatic Severe AS

Unadjusted: ~3.5 fold increase in all-cause Mortality

All-Cause Mortality AVR vs. Medical Therapy in Asymptomatic Severe AS

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, $95 \% \mathrm{Cl}$			Hazar IV, Rando		
Kang et al	-1.9661	0.786	22.1\%	0.14 [0.03, 0.65]					
Pai et al	-1.772	0.2707	38.2\%	0.17 [0.10, 0.29]					
Taniguchi et al	-0.5108	0.2069	39.8\%	0.60 [0.40, 0.90]			--		
Total ($95 \% \mathrm{Cl}$)			100.0\%	0.27 [0.09, 0.77]					
Heterogeneity: Tau ${ }^{2}$ Test for overall effect	$\begin{aligned} & 0.67 ; \mathrm{Chi}^{2}=15.22,0 \\ & Z=2.46(\mathrm{P}=0.01) \end{aligned}$	$d f=2(P=$	$=0.0005) ;$	$F^{2}=87 \%$	$\stackrel{\square}{0.01}$	1 0.1	Early AVR	10	100

Adjusted: ~3.7 fold increase in all-cause Mortality

Sudden Death In Asx Severe AS

Studies	Sudden death (n)	Preceded by symptoms (n)	Not preceded by symptoms (n)
Pellikka et al. 1990 n=143	3	3	0
Rosenheck et al. 2000; $\mathrm{n}=128$	1	-	-
Amato et al. 2001; n=66	4	-	4
Lancellotti et al 2005; $\mathrm{n}=69$	2	-	-
Pellikka et al. 2005; $n=622$	11	0	11
	udden	ath/year	
	II the s	den de	
	$73 \%(32 / 44) \text { had }$		
	$\text { eding } A$	Sympto	
Saito et al. 2012; $n=103$	6	4	2
Yingchoncharoen et al.; 2012; $n=79$	1	-	-
Levy et al. 2014; $\mathrm{n}=43$	0		

* 6 cardiac deaths occurred: 1 sudden without symptoms and 5 cardiac but with patients asymptomatic at the last follow-up

Stress Test in Severe Asymptomatic AS?

๑tct2015

A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease

Bernard lung ${ }^{\text {a* }}$, Gabriel Baron ${ }^{\text {b }}$, Eric G. Butchart ${ }^{\text {c }}$, François Delahaye ${ }^{\text {d }}$, Christa Gohlke-Bärwolf ${ }^{\mathrm{e}}$, Olaf W. Levang ${ }^{\mathrm{f}}$, Pilar Tornos ${ }^{\mathrm{g}}$, Jean-Louis Vanoverschelde ${ }^{\text {h }}$, Frank Vermeer ${ }^{i}$, Eric Boersma ${ }^{j}$, Philippe Ravaud ${ }^{\text {b }}$, Alec Vahanian ${ }^{\text {a }}$
"In severe AS, an exercise test was performed in only 5.7\% of patients with no symptoms..."
"This under-use may be explained by an insufficient implementation of the current guidelines and fear of complications or inexperience in exercise testing..."

What \% of Severe Asx AS will have Abnormal Stress Test?

Usual criteria for Abnormal stress test: 1) Limiting symptoms (Angina-dyspneasevere dizziness-syncope)
2) Fall or no increase (<20mmhg) in SBP during exercise
3) Significant ventricular arrhythmias (>3 consecutive ventricular premature beats)
4) $\boldsymbol{> 2} \mathbf{~ m m}$ (or 5 mm ?) ST-segment depression

Abnormal Stress Test in Asx AS

Studies	Moderate-Severe AS			Severe AS only		
	\% Abnormal Stress Test	n	N	\% Abnormal Stress Test	n	N
Takeda et al. 2001	27\%	13	49			
Amato et al. 2001				67\%	44	66
Alborino et al. 2002	60\%	18	30			
Das et al. 2003	29\%	19	65			
Oweraly. Range:26-6\%\%						
\sim Pooled 40-50\% AbMOrMAI Stress Test						
Lancellotti et al. 2008				47\%	60	128
Lafitte et al. 2009				65\%	39	60
Marechaux et al. 2010	27\%	51	186			
Rajani et al. 2010	15\%	3	20	39\%	7	18
Donal et al. 2011	33\%	69	207			
Levy et al. 2014				28\%	12	43
Total		286	784		212	434
\% Abnormal Stress test	Range: 15-66\%	Poole	36.5\%	Range: 28-67\%	Poole	48.8\%

Meta-Analysis of Prognostic Value of Stress Testing in Patients With Asymptomatic Severe Aortic Stenosis

Asim M. Rafique, MD ${ }^{\mathrm{a}}$, Simon Biner, MD ${ }^{\mathrm{a}, \mathrm{b}}$, Indraneil Ray, MD ${ }^{\text {a }}$, James S. Forrester, MD ${ }^{\mathrm{a}}$, Kirsten Tolstrup, MD ${ }^{\text {a }}$, and Robert J. Siegel, MD ${ }^{\text {a, * }}$

Abnormal stress test associated with ~8 fold increase in CV Events

Meta-Analysis of Prognostic Value of Stress Testing in Patients With Asymptomatic Severe Aortic Stenosis

Asim M. Rafique, MD ${ }^{\text {a }}$, Simon Biner, MD ${ }^{\text {ab }}$, Indraneil Ray, MD ${ }^{\text {a }}$, James S. Forrester, MD ${ }^{\text {a }}$, Kirsten Tolstrup, MD ${ }^{\text {a }}$, and Robert J. Siegel, MD ${ }^{\text {a, }}$ *

Figure 3. Pooled outcome estimates of risk for sudden cardiac death. None of the patients with normal stress test results experienced sudden death. Squares represent effect sizes; extended lines indicate 95% Cls; diamond represents total effect size.

Abnormal stress test associated with ~6 fold increase in Cardiac Death

Prognostic Importance of Quantitative Exercise Doppler Echocardiography in Asymptomatic Valvular Aortic Stenosis

Patrizio Lancellotti, MD, PhD; Florence Lebois, MD; Marc Simon, MD; Christophe Tombeux, MD; Christophe Chauvel, MD; Luc A. Pierard, MD, PhD, FESC

Adverse Event: Cardiac death, AVR, hospitalization for HF, Onset symptoms

Figure 2. Survival curves according to exercise-induced changes in mean transaortic pressure gradient (MPG). Diff indicates difference exercise-rest.

Predictors of Adverse Events In Asymptomatic Severe Aortic Stenosis

๑tct2015

Predictor of Adverse Events in Patients with Asymptomatic Severe Aortic Stenosis

Echocardiographic

Peak velocity ($>4 \mathrm{~m} / \mathrm{s} ;>5 \mathrm{~m} / \mathrm{s} ;>5.5 \mathrm{~m} / \mathrm{s}$)
Rates of progression of PV ($>0.3 \mathrm{~m} / \mathrm{s} /$ year $)$
AVA or IAVA ($<0.7 \mathrm{~cm}^{2}$ or $<0.6 \mathrm{~cm}^{2} / \mathrm{m}^{2}$)
Mean Gradient
Calcification severity
Left ventricle hypertrophy or LVMI
LVEF or LVEF<50\%
LVEDV
Mitral regurgitation 3 or 4
Left atrial area
LV strain
Valvuloarterial impedance (Zva) (especially>4.5)
Low stroke volume ($<35 \mathrm{cc} / \mathrm{m}^{2}$)
Pressure drop / flow slope

Valve Calcification

๑tct2015

What about the "truly" Asymptomatic Severe AS?

๑tct2015

Clinical Outcome in

Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed
Aortic Stenosis Grading Classification
Patrizio Lancellotti, MD, PhD, ${ }^{*}$ Julien Magne, PhD, ${ }^{*}$ Erwan Donal, MD, PhD, \dagger Laurent Davin, MD, ${ }^{*}$ Kim O'Connor, MD,* ${ }^{*}$ Monica Rosca, MD,* Catherine Szymanski, MD,* Bernard Cosyns, MD, PHD,§ Luc A. Piérard, MD, PHD*
Liège and Brussels, Belgium; Rennes, France; and Quebec, Canada

"Truly" Asymptomatic Severe AS

$\mathrm{N}=150$ with AVA $<1 \mathrm{~cm}^{2}$ (no gradient criteria)
Exclusion: 1) LVEF <55\% 2) other moderate-severe valve disease 3) Atrial Fibrillation 4) COPD 5) positive stress test 6) incapacity to perform stress test
Endpoint: CV death or need for AVR motivated by the development of symptoms or LVEF<50\%)

Clinical Outcome in
 Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed Aortic Stenosis Grading Classification

CV events 29\% at 1-year FU 49\% at 2-year FU 60\% at 3-year FU

Adjusted Incidence of CV events among patients with Normal Stress Test: $\mathrm{n}=150$

Among the subset of patients with Asymptomatic Severe AS AND Normal stress test, $\sim 70 \%$ of patients have at least 50% chance to have adverse CV events at 2 years

LF= indexed stroke volume $<35 \mathrm{cc} / \mathrm{m}^{2}$ LG= MG <40mmhg

Should and could we recommend an early intervention strategy for "truly" Asymptomatic Severe Aortic Stenosis patients?

Decreased Risk of

Aortic Valve Surgery

DWIGHT C. MeGOON, MD; CARLOS PESTANA, MD; AND EMERSON A. MOFFITT, MD, ROCHESTER, MINN
"Low hospital mortality tends to justify a policy of accepting patients for operation earlier in the natural progression of their disability, because it is recognized that there is a definite risk of rapid deterioration or sudden death in the earlier policy of deferring operation patients until their disability had become definite and progressive and until their cardiac reserve was nearly depleted."

Aortic Stenosis Spectrum: Functional Classification

Mild	Moderate AS	Moderate AS	Severe AS AS Symptoms -	Severe AS Symptoms +
Symptoms -	Symptoms +			

Conclusions

- Asymptomatic Severe AS is frequent, representing ~50\% of the Severe AS referred to echo lab
- Stress tests are abnormal in ~40-50\% of the patients, and are associated with high rates of adverse cardiac events at followup
- Rate of sudden death are $\sim 1.0 \% / y e a r$, with high proportion of sudden death occurring without preceding symptoms

Conclusions

- Many Echographic predictors (such as peak velocity, peak velocity progression, degree of valve calcification, Zva, LV stroke volume, LVH, etc.) have been identified and can help better stratify patients
- Better level of evidences (randomized trial) is clearly needed to improve level of recommendations

