Intravascular Ultrasound Pre- and Post-Intervention

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

IVUS-MLA to Predict FFR

	N	FFR	RLA	MLA	AUC	Sens	Spec	PPV	NPV	Accu
Takaki (1999 Circ)	51	0.75	9.3	3.0	_	83%	92%	_	_	_
Briguori (2001 AJC)	53	0.75	7.8	4.0	_	92%	56%	38%	96%	64%
Ben-Dor (2012 *)	205	0.80	8.6	3.09	0.73	69%	72%	_	_	70%
Kang (2011 Circ int)	236	0.80	7.6	2.4	0.80	90%	60%	37%	96%	68%
Kang (2012 AJC)	784	0.80	8.2	2.4	0.77	84%	63%	48%	90%	69%
Koo (2011 JACC int)	267	0.80	6.8	2.75	0.81	69%	65%	27%	81%	67%
Gonzalo (2012 JACC)	47	0.80	7.1	2.36 IVUS	0.63	67%	65%	67%	65%	66%
Gonzalo (2012 JACC)	61	0.80	7.1	1.95	0.70	82%	63%	66%	80%	72%

Morphological Predictors of Non-Culprit related MACE

PROSPECT ATHEROREMO

VIVA

TCFA [HR 1.9]

Evaluation of Calcified Lesions

Superficial calcium

Deep calcium

Calcified nodule

Stent Expansion in Calcified Lesions

The greater calcium thickness, arc, and length, the greater is the likelihood of underexpansion

Vavarunakis et al. Catheter Cardiovasc Interv 2001;52:164-72 Hoffmann et al. Eur Heart J 1998;19:1224-31

CardioVascular Research Foundation

Unusual Lesion Morphology 57-year old male with UA

Stent Strategy for LM Bifurcation

LCX FFR 0.78

LAD FFR 0.72

LCX os minimal

COLLEGE MEDICINE

LAD LCX

LAD os EEMφ 5.2mm MLA 6.0mm²

Mechanism of In-stentRestenosisUnderexpansionIntimal HPEdge Restenosis

Neointimal Characterization by IVUS

Predictor for Distal Embolization

Device Sizing

LAD Promus 3.5x24mm

Distal ref

MLA site

Prox ref

LumenØ 3.5mm EEMØ 4.8mm

IVUS Mechanisms of DES Failure

	Early Throm	bosis	Restenosis		
Small MSA (Underexpansion)	 Fujii et al. JACC 2005;4 Okabe et al., AJC 2007; Liu et al. JACC Interv 20 Choi et al. Circ Interv 20 	5:995-8 100:615-20 009;2:428-34 011;4:239-47	 Sonoda et al. JACC 2004;43:1959-63 Hong et al. EHJ 2006;27:1305-10 Doi et al. JACC Interv. 2009;2:1269-75 Fujii et al. Circulation 2004;109:1085-8 Kang et al. Circ Interv 2011;4:9-14 Choi et al. AJC 2012;109:455-60 Song et al. CCI in press 		
Inflow/outflow tract disease	 Fujii et al. JACC 2005;4 Okabe et al., AJC 2007; Liu et al. JACC Interv 20 Choi et al. Circ Interv 20 	5:995-8 100:615-20 009;2:428-34)11;4:239-47	•Sakurai et al. AJC 2005;96:1251-3 •Liu et al.AJC 2009;103:501-6 •Costa et al. AJC 2008;101:1704-11		
Underexpansion	Residual PB	Edge dis	section	Intramural hematoma	

Underexpansion Predicts Restenosis

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

Two-Stent in LMCA Bifurcation

9-month ISR

2-yr MACE-free Survival

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

CardioVascular Research Foundation

Residual Plaque Predicts Edge Restenosis

	Population	DES	F/U time	Predictor
SIRIUS ¹	6 edge restenosis vs. 162 controls	SES	8 mo	Ref segment PB 60% vs. 41% (p<0.01)
TAXUS ²	276 edge stenosis	PES	9 mo	Ref segment PB 47%

¹ Am J Cardiol 2005;96:1251-3 ²Liu et al. Am J Cardiol 2009;103:501-6

Intravascular Ultrasound Predictors for Edge Restenosis After Newer Generation Drug-Eluting Stent Implantation

433 E-ZES

Sensitivity 67% Specificity 86%

422 R-ZES

813 EES

Sensitivity 86% Specificity 80%

Reference segment residual PB<55% is useful to determine the optimal landing site of stent deployment Kang et al. Am J Cardiol 2013 in press

IVUS-detected PCI Complication

Dissection

Plaque prolapse

Hematoma

Perforation

Deformation

Original Investigation

Effect of Intravascular Ultrasound-Guided vs Angiography-Guided Everolimus-Eluting Stent Implantation The IVUS-XPL Randomized Clinical Trial

Sung-Jin Hong, MD; Byeong-Keuk Kim, MD; Dong-Ho Shin, MD, MPH; Chung-Mo Nam, PhD; Jung-Sun Kim, MD; Young-Guk Ko, MD; Donghoon Choi, MD; Tae-Soo Kang, MD; Woong-Chol Kang, MD; Ae-Young Her, MD; Yonghoon Kim, MD; Seung-Ho Hur, MD; Bum-Kee Hong, MD; Hyuckmoon Kwon, MD; Yangsoo Jang, MD; Myeong-Ki Hong, MD, PhD; for the IVUS-XPL Investigators

- between Oct 2010-July 2014 at 20 centers in Korea
- 1400 pts with long lesions (>28mm stent length)
- randomly assigned to receive IVUS-guided (n=700) or angiography-guided (n=700) EES implantation
- primary end point: 1-year MACE (cardiac death, target lesion-related MI, or ischemia-driven TLR)

Hong SJ, Hong MK et al. JAMA 2015;10:1-9

Angiographic and Procedural Characteristics

	IVUS-guided	Angio-guided	р
Pre-PCI QCA-MLD, mm	0.83±0.42	0.82±0.43	0.56
Pre-PCI QCA-RVD, mm	2.89±0.45	2.85±0.45	0.13
Pre-PCI lesion length, mm	34.7±10.8	35.2±10.5	0.41
Post-dilatation, N (%)	534 (76%)	402 (57%)	<0.001
Final balloon size, mm	3.14 ±0.43	3.04 ±0.42	<0.001
Maximal inflation pressure, atm	16.5±4.1	15.9±4.1	0.05
Post-stenting QCA-MLD, mm	2.64±0.42	2.56±0.39	<0.001
Post-stenting QCA-RVD,mm	3.03±0.44	2.97±0.43	0.01
Total stent length, mm	39.3±13.1	39.2±12.3	0.90

Hong SJ, Hong MK et al. JAMA 2015;10:1-9

Kaplan-Meier Estimates of 1-year MACE

	IVUS-guided	Angio-guided	HR	р
Cardiac death	3 (0.4%)	5 (0.7%)	0.60 (0.14-2.52)	0.48
Target lesion-related MI	0 (0%)	1 (0.1%)		0.32
Ischemia-driven TLR	17 (2.5%)	33 (5.0%)	0.51 (0.28-0.91)	0.02
Stent thrombosis	2 (0.3%)	2 (0.3%)	1.00 (0.14-7.10)	1.0

Hong SJ, Hong MK et al. JAMA 2015;10:1-9

Summary

- Pre-procedure IVUS can assess lesion severity, plaque vulnerability and risk for distal embolization
- IVUS is helpful to determine PCI strategy in complex lesion (bifurcation, calcified, ISR, etc.)
- IVUS is useful for device sizing
- To prevent stent failure, underexpansion and edge problems should be corrected post-stenting
- IVUS-guided optimization improves PCI outcome

