Improving PCI Outcomes Angiography Alone is Not Enough Role for NIRS-IVUS

James A. Goldstein MD Director of Research and Education Dept of Cardiovascular Medicine William Beaumont Hospital

Stenting: "Normal to Normal" Where To Start and Stop?

Where We Need to Do Better in the Cath Lab

★ Optimal Stenting Procedures
 → Determine Optimal Vessel Length to Stent
 → Measure Precise Stent Length

Optimize Stent Deployment
Minimize Subacute Thombosis and Late Restenosis

Characterize Non-Flow Limiting Lesions
 Pre-emptive PCI of VP?

Direct Coronary Imaging Facilitates Optimal PCI and Improved Outcomes

Stent Thrombosis

Meta-Analysis of 11 Studies (n=19,619 pts)

Compared with angiography-guidance, IVUS-guided DES implantation was associated with a reduced incidence of

- Death (HR: 0.59, 95% CI: 0.48-0.73, p<0.001)
- Stent thrombosis (HR: 0.58, 95% CI: 0.44-0.77, p<0.0001)
 - Major adverse cardiac events (HR: 0.87, 95% CI: 0.78-0.96, *p*=0.008)

Zhang et al. Eurointervention 2012;8:855-65

Witzenbichler B et al. Circulation. 2014;129:463-470

IVUS Guidance changed procedure>75% cases Longer, appropriately sized stents

IVUS Guidance Improved Clinical Outcomes
 33% reduction in MI
 50% reduction ST
 38% reduction TVR

IVUS vs Angiography-Guided DES Implantation

JAMA. 2015;314(20):2155-2163. doi:10.1001/jama.2015.15454

IVUS: 2.9% absolute and 48% relative reduction in MACE

Benefits of IVUS on PCI Outcome

- Optimal Length of Vessel to Stent
- Precise Choice of Stent Length
- Optimal Stent Expansion
- Detection Stent Edge Complications

Hypothesis

Plaque Composition May Influence Outcome

Data Acquired by a Combined IVUS and NIRS Catheter

Adapted from Bourantas, et al. JACC 2013;16(13):1369

Intracoronary Near-Infrared Spectroscopy (NIRS) Has Been Validated to Detect LCP in Patients

LCBI = # pixels in a region of interest indicating lipid x 1000 MaxLCBI_{4mm} = maximum LCBI in any 4-mm segment

NIRS-IVUS Plaque Characterization

Proper Length of Vessel to Stent Optimal Stent Deployment

Patient with USA Stenting: "Full Lesion Coverage" Where To Start and Stop?

NIRS Reveals Lipid Core at the Stenotic Site, and Lipid Cores at Two Additional Locations

One lipid core is located at the stenotic site (#2)

The MaxLCBI_{4mm} at the proximal, non-stenotic site is 428 (#1)

Stenotic Culprit Site

NIRS-IVUS at the Stenotic Site

Lumen Area:	Plaque Burden:	maxLCBI _{4mm} :
2.63 mm^2	<u>71%</u>	<u> </u>

NIRS-IVUS at Proximal Site

Not Severely Stenotic by Angio, but IVUS Reveals Bulky LCP with Lumen Area <4mm²

and >70% Plaque Burden

The Distal Lesion Was Found to be Non-Stenotic with MLA >4mm²

NIRS-IVUS "Proven" Optimal Result

Full Lesion Length Coverage Optimal stent Expansion & Apposition

Lipid Core Plaque Beyond Angiographic Stenosis Hanson et al Coronary Artery Disease 2015

Direct Coronary Imaging Optimizes Lesion Coverage

Acute Stent Thrombosis Uncovered LCP

The proximal end of the stent that thrombosed is located in a lipid-core plaque.

Sakhuja, R. et al. Circulation 2010;122:2349-2350

Mechanisms of Peri-procedural MI Lipid Core Plaque & Distal Embolization

- Complicates 12-15% of PCI's
- Distal Embolization Lipid common
- Associated with Fibrosis by MRI
- Assoc. with Increased Mortality

Prasad A, Herrmann J. N Engl J Med 2011;364:453-464

Lipid Core Plaque & Distal **Circumferential LCP Embolization** 90 70 **Ulcerated Plaque**

Goldstein et al: JACC Imaging 2009 2: 1420-4

Peri-Procedural No-Reflow & MI

MaxLCBI_{4mm} > 500 Predicts 50% risk PPMI

Goldstein et al. Circ Cardiovasc Interv. 2011:4:429-437

The VP Hypothesis Connecting the Dots

Patterns of LCP in ACS

Connecting the Dots: 54 Year Old with Inferior-Posterior MI

These LCP lesions did not develop overnight!

Angiogram After PTCA with Small Balloon Flow Restored

Madder, et al JACC Intervent 2013;6:838-46

Detection by Intracoronary NIRS of LCP at Culprit Sites in Survivors of Cardiac Arrest

Madder RD et al J Invasive Cardiol 2014;26:78-79

These LCP lesions did not develop overnight!

We Need to Detect Non-Culprit VP in the Cath Lab

PRAMI Study Wald DS et al. N Engl J Med 2013;369:1115-1123

Preventive PCI in non-infarct major stenoses reduced MACE compared with PCI limited to infarct artery

Prevalence of LCP in Target Lesions in ACS v CSA Madder & Goldstein. Circ Cardiovasc Interv 2012;5:55-61

Remote LCP in 70% ACS Cases

Prevalence of LCP in Target Lesions in ACS v CSA Madder & Goldstein. Circ Cardiovasc Interv 2012;5:55-61

64 year old presents with STEMI in March 2012

Unstable angina October 2012

Benefits of NIRS-IVUS imaging (Diagnosis, Guidance and prognosis)

Pre-procedural Strategy Length/Size of Vessel to Stent

- Early procedural assessment (Guidance)
 - Geographic Miss, Expansion, Malapposition, Dissection, and Clot

→ • **Prognosis**

"Vulnerable Plaque"