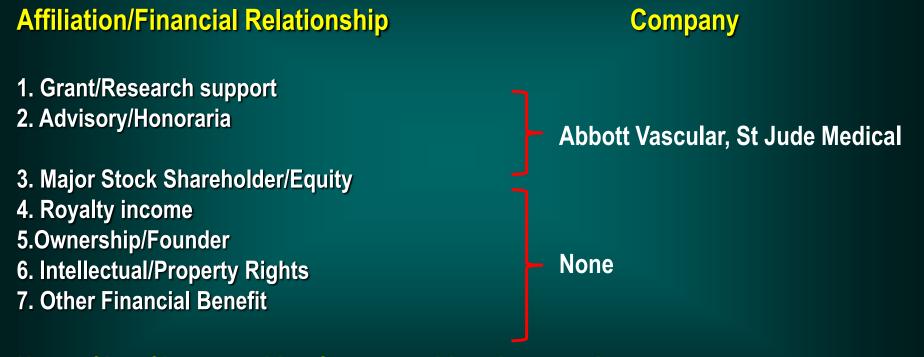


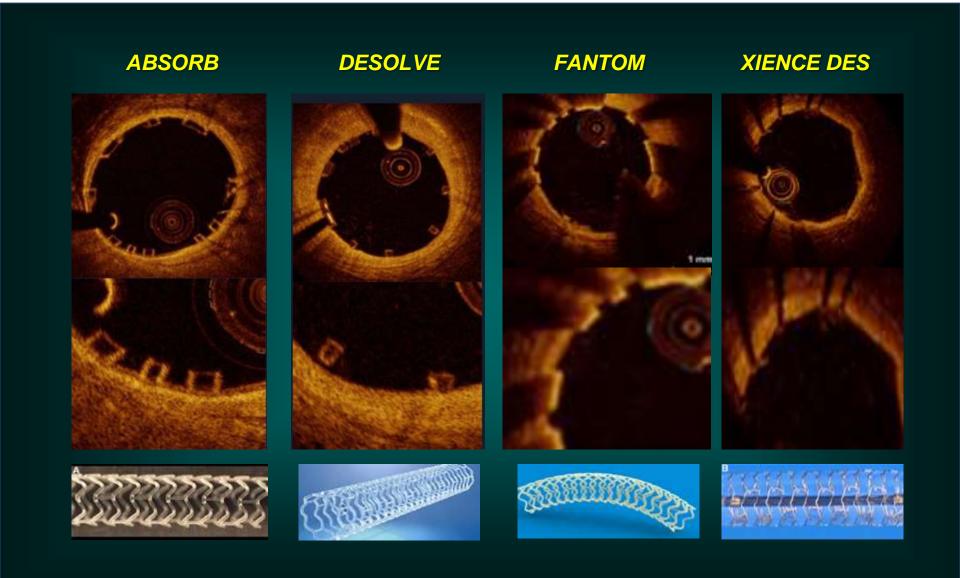
Real World BVS Implantation - OCT Guided or Angiography Guided?

TCTAP Pre-workshop Course IV. - Imaging April, 26 August 2016

Nigel S Jepson

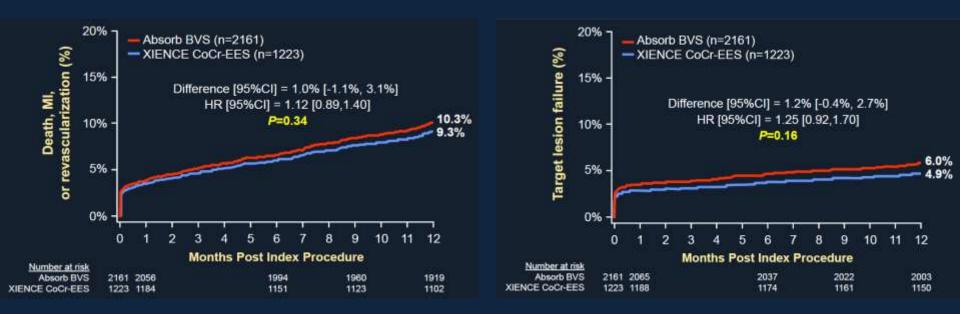

Director of Coronary Care Unit, Prince of Wales Hospital Director of Cardiac Catheterization Laboratories, Eastern Heart Clinic, Sydney, Australia

 Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below -



No conflict of interest with reference to this talk or meeting

BRS Platforms and OCT Characterization



ABSORB 1-Year Meta-analysis Outcomes in 3389 'On-label' patients

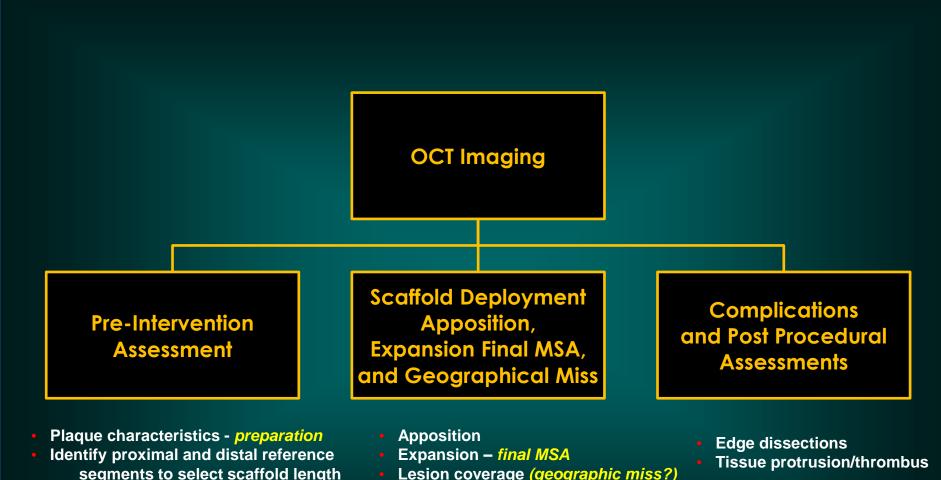
ABSORB II, ABSORB Japan, ABSORB China, ABSORB III

PoCE: Death, MI or Revascularization (pooled)

DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled)

IVUS or OCT guidance/procedure – 23.9 % Absorb vs 20.3% Xience Co-Cr EES P<0.02

Stone et al Lancet 2016

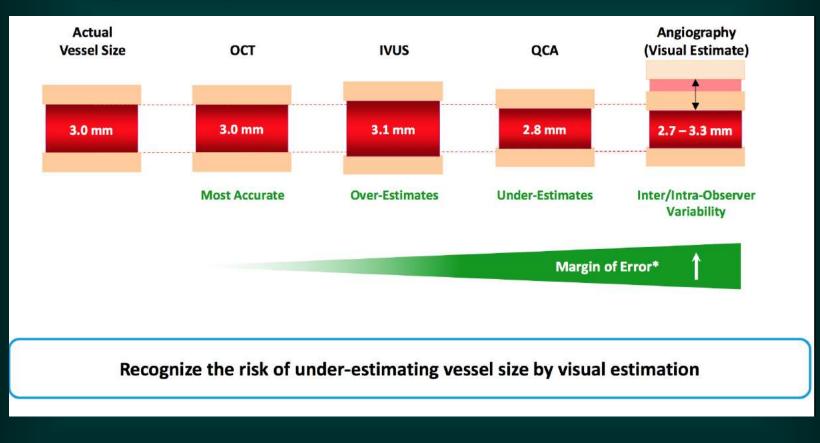

What Advantages over Angiographic Guidance?

Measure vessel diameter to select scaffold size – esp 2.5 mm

OCT imaging Guidance - BRS Implantation

- Lesion coverage (geographic miss?)
- **Tissue protrusion/thrombus**

What Have We Learnt?

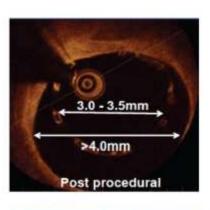

Correct Sizing + Post-dilatation

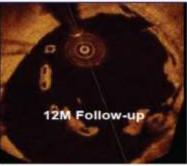
BRS – Insights from Intravsacular Imaging

Vessel Sizing Techniques

BRS – Insights from Intravsacular Imaging

OCT offers advantages - SIZING


Small malapposition


- · Correctable by post dilatation
- Resolve at FUP

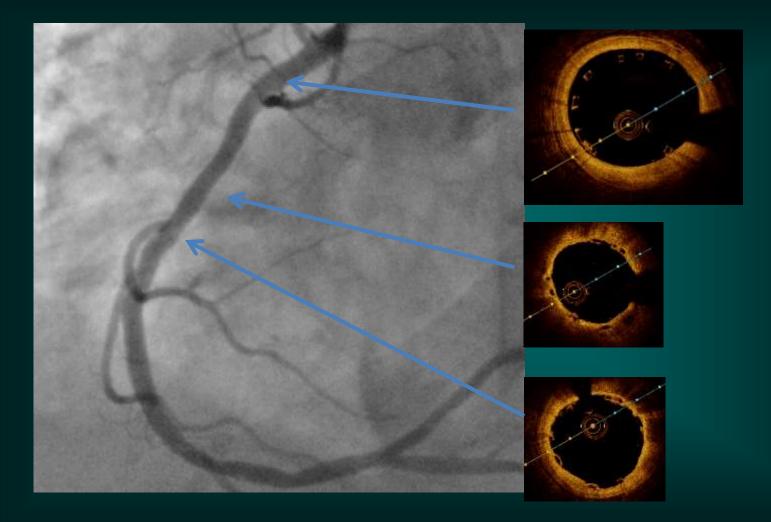
Large malapposition

- Uncorresctable (persistent at FU)
- Overexpansion by a large balloon
- \rightarrow Acute disruption

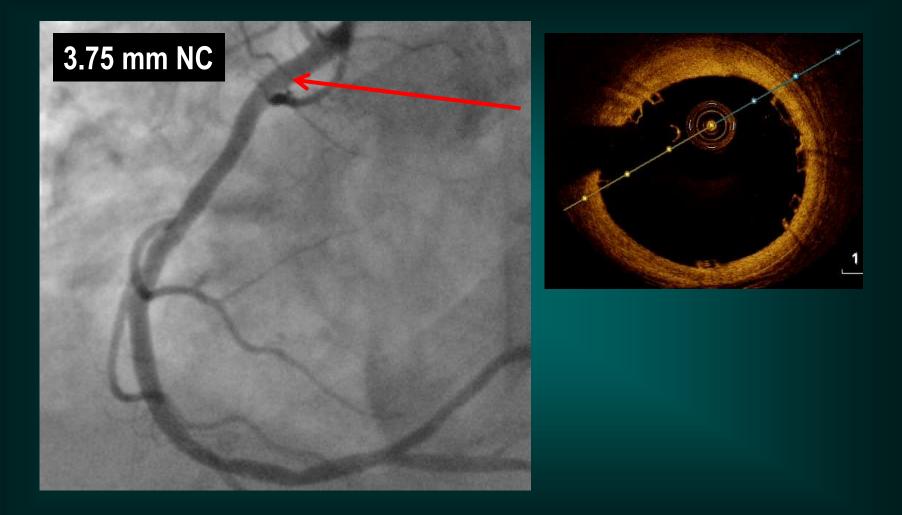
Max Diameter at landing zone (angio)	<2.5mm	2.5-3.3mm	>3.3mm	-
Edge dissection	61.5%	33.3%	11.1%	p 0.05
>5% Malapposition	7.7%	36.7%	66.7%	p 0.02



Gomez-Lara J et al Eurointerv. 2012; 8:214


Bioresorbable Scaffolds – Sizing 61 M, Inferior STEMI, Iysis, < 24 hr angiogram

3.0 x 28 mm BVS/3.5 mm NC



Bioresorbable Scaffolds – Sizing 61 M, Inferior STEMI, Iysis, < 24 hr angiogram

Bioresorbable Scaffolds – Sizing 61 M, Inferior STEMI, Iysis, < 24 hr angiogram

Optimization of ABSORB Scaffold Implantation with OCT

OCT post successful BVS implantation by angiography

28% (8/29) required further intervention after OCT review

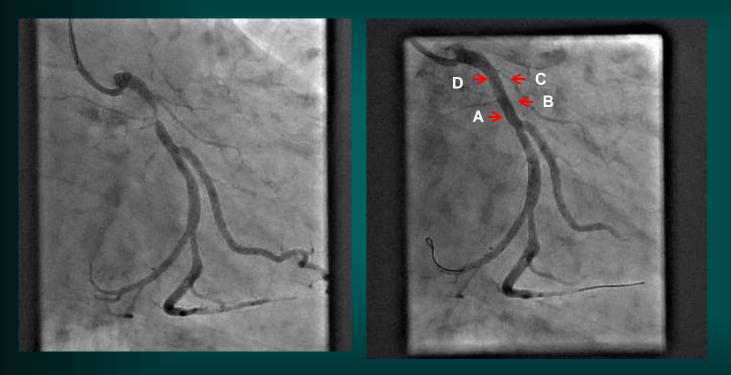
3/8 due to scaffold malapposition

5/8 due to scaffold underexpansion*

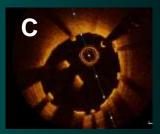
**< 80% mean prox/dist reference area*

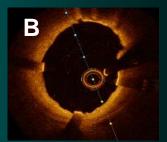
	Not requiring OCT optimisation (n=21)	Requiring OCT optimisation (n=8)	<i>p</i> -value
Lesion type			
A	10 (66%)	5 (33%)	0.49
B or C	11 (79%)	3 (21%)	0.49
Fluoroscopic time, min (SD)	18.9 (8.0)	26.0 (18.5)	0.16
Mean no. balloon inflations (SD)	8.7 (3.3)	16.5 (11.3)	< 0.01
Length of procedure, min (SD)	83.7 (26.5)	113.7 (39.0)	< 0.05

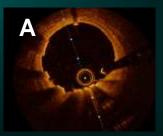
EuroIntervention 2015;10:1154-1159



Bioresorbable Scaffolds – Sizing


Malapposition cannot be detected by angiography


3.0 x 18 mm REVA FANTOM Scaffold

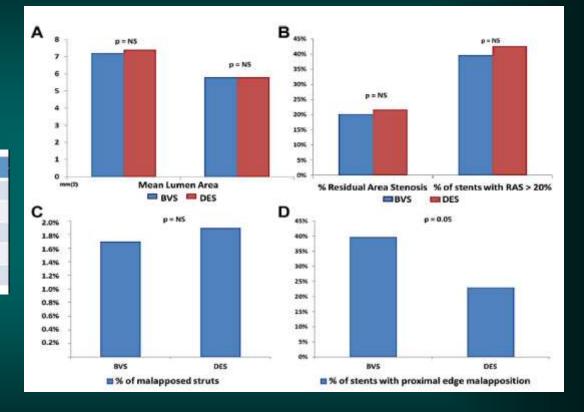


OCT after failure to cross with NC balloon

POWH/EHC Fantom II Trial - Case # 6

ABSORB Scaffolds vs Second-Generation DES

A Comparison Study of 100 Complex Lesion treated Under OCT Guidance


ABSORB Biodegradable Stents Versus Second-Generation Metal Stents

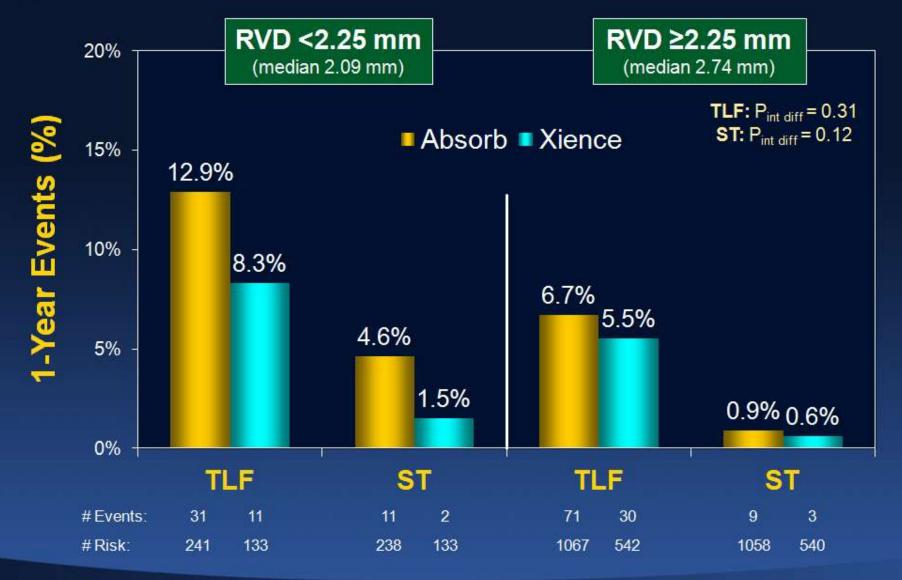
A Comparison Study of 100 Complex Lesions Treated Under OCT Guidance

Alexie Maturini, MD,²| Gred G. Seces, MD,²| Gunni Dal'Ara, MD,² Martes Ghiote, MD,² Jun C., Rena-Merchan, MD,³ Alexandro Lapi, MD,² Nicola Vicesonto, MD,² Alimir C. Luday, MD, PiD,³ Rani De Silva, MD, PiD,⁶ Nicolas Fein, PID,³ Teen Naganenta, MD,³ Sendina Valenta, MD,³ Antonio Calendro, MD, PidJ,² Carlo Di Mario, MD, PidD⁴

London, United Kingdom; Florence, Neuros, and Miden, Italy, and Singapore

	BVS (n=50)	DES(n=50)	P
Lesion lenght, mm	24.7 (14.2)	25.1 (10.6)	0.86
Calcified	31 (62.0)	37 (74.0)	0.28
Ostial	7 (14.0)	5 (10.0)	0.76
Bifurcation	17 (34.0)	23 (46.0)	0.30
In-stent restenosis	6 (12.0)	3 (6.0)	0.48

Mattesini et al JACC Cardiovasc Int 2014;7(7):241-50



What Have We Learnt?

Accurate Sizing and Optimal Implantation in Small Vessels with 2.5 mm Scaffolds

ABSORBIN Outcomes by QCA RVD 2.25 mm

9tct2015

Median based on pooled Absorb and Xience

CRF RESEARCH FOUNDATIO

ABSORB 1-Year Meta-analysis - Outcomes ABSORB II, ABSORB Japan, ABSORB China, ABSORB III

	Relative risk (95% Cl)	p value
Patient-oriented composite endpo or revascularisation)	oint (death, myocard	lial infarction,
Diabetes present	1·39 (1·15-1·68)	0-0008
Previous cardiac intervention	1·40 (1·16-1·69)	0-0006
Number of target lesions (≥2 vs 1)	1.45 (1.16-1.82)	0-001
Any lesion with minimal luminal diameter <median (0·93="" mm)*<="" td=""><td>1·37 (1·13-1·68)</td><td>0-002</td></median>	1·37 (1·13-1·68)	0-002
Any lesion with reference vessel diameter <median (2·65="" mm)*<="" td=""><td>1.23 (1.01-1.51)</td><td>0-04</td></median>	1.23 (1.01-1.51)	0-04
Any ACC/AHA class B2 or C lesion (vs class A or B1)*	1.38 (1.11-1.73)	0-003
BVS (vs CoCr-EES)	1·10 (0·90-1·34)	0-29
Device-oriented composite endpo cardiac death, target vessel-related ischaemia-driven target lesion rev	d myocardial infarcti ascularisation)	
Diabetes present	1.56 (1.19-2.04)	0-002
Previous cardiac intervention	1.36 (1.03-1.78)	0-03
Any lesion with minimum luminal diameter <median (0:93="" mm)*<="" td=""><td>1·37 (1·03-1·82)</td><td>0-03</td></median>	1·37 (1·03 - 1·82)	0-03
Any lesion with reference vessel diameter <median (2·65="" mm)*<="" td=""><td>1.52 (1.14-2.03)</td><td>0-005</td></median>	1.52 (1.14-2.03)	0-005
Any ACC/AHA class B2 or C lesion (vs class A or B1)*	1.65 (1.19-2.28)	0-002
BVS (vs CoCr-EES)	1.23 (0.92-1.64)	0.14
Myocardial infarction, all		
Diabetes present	1·61 (1·20-2·15)	0-002
Previous cardiac intervention	1.60 (1.19-2.15)	0-002
Number of target lesions (≥2 vs 1)	1.47 (1.03-2.08)	0-04
Any lesion with minimum luminal diameter <median (0·93="" mm)*<="" td=""><td>1.42 (1.04-1.95)</td><td>0-03</td></median>	1.42 (1.04-1.95)	0-03
Any lesion with reference vessel diameter <median (2·65="" mm)*<="" td=""><td>1·57 (1·13-2·16)</td><td>0-007</td></median>	1·57 (1·13-2·16)	0-007

1.68 (1.18-2.41)

1.35 (0.98-1.87)

0.003

0.052

Any ACC/AHA class B2 or Clesion

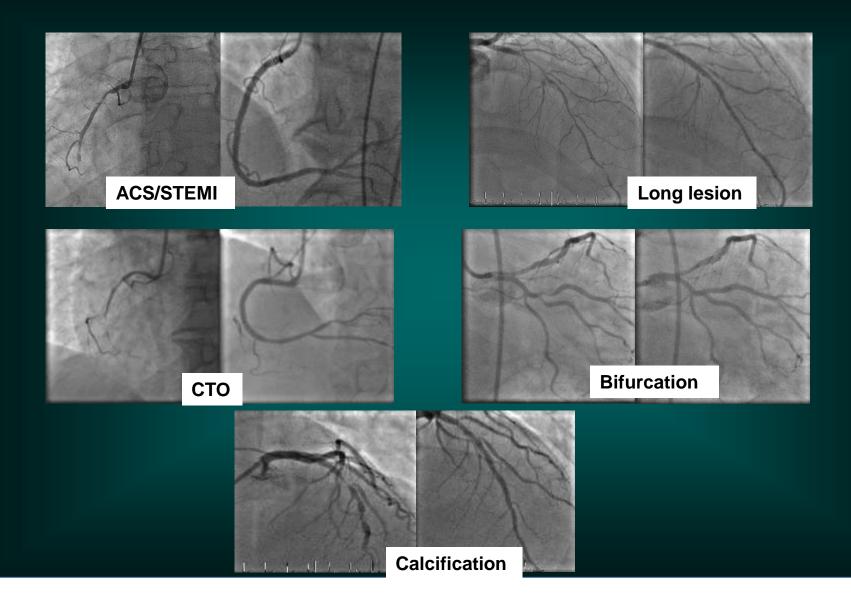
(vs class A or B1)*

BVS (vs CoCr-EES)

Independent baseline predictors of ischaemic events at 1 year by logistic regression

Any lesion with reference vessel diameter < median (2.65mm) predictive of –

- POCE (death, MI or revasc)


DOCE/TLF (cardiac death, TV-MI, ID-TLR)

- All MI

Absorb BVS Implantation – Real-world Disease

Base-line Demographics - Dec 2010 - Dec 2015

Ν	295 (312 procedures)
Age (yrs/range)	59 (18-83)
Male (%)	76
DM (%)	20
Hypertension (%)	73
Prior MI (%)	19
Hyperlipidaemia (%)	85
CKD (%)	7
Prior PCI (%)	21
Prior CABG (%)	9

Procedural Details

CTO (%)	7.5
Long lesions (%)	29
Bifurcations (%)	19
Moderate/severe calcification (%)	26
B2/C lesion complexity(%)	57

Procedural Details (3)

Pre-dilatation (%)	100
Scaffold overlap (%)	27
Multi-vessel BVS (%)	13
Total scaffolds (%)	472
Scaffolds/patient (n/range)	1.6 (1-5)
OCT/IVUS use (%)	18
Rotablator/scoring balloon (%)	4
NC balloon post-dilatation (%)	99

Clinical Outcomes

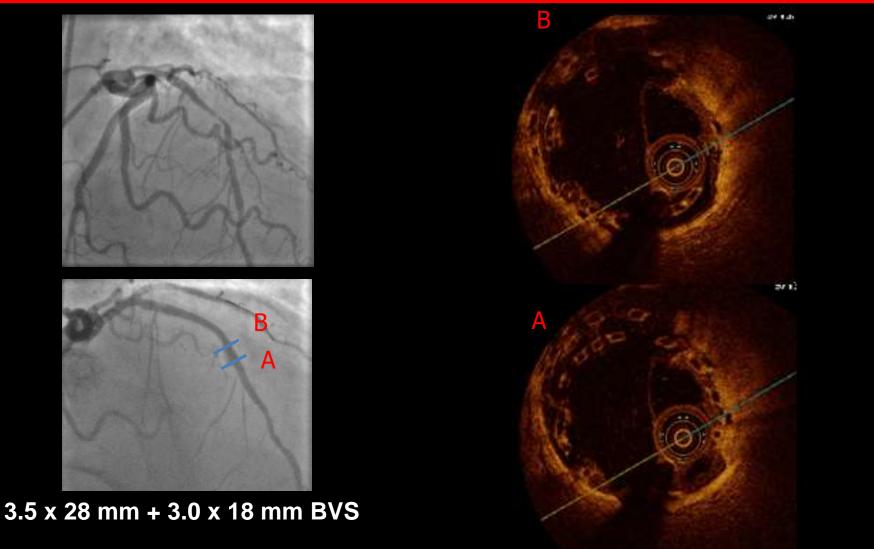
100 % 30 d, 73% 12 mth, 49% 24 mth	
Peri-procedural non-Q MI n (%)	9 (3.1)
Deaths n (%)	3 (1.0)
Cardiac Deaths n (%)	1 (0.3)
TVR n (%)	9 (3.1)
TLR n (%)	7 (2.4)
MACE n (%)	18 (6.1)
Scaffold thromboses – Definite/probable n (%)	3 (1.0)
Scaffold thromboses – Possible n (%)	1 (0.3)
MI (spontaneous) n (%)	3 (1.0)

EBC 2014, CSANZ 2015

Clinical Outcomes – First 100 pts 12 mths

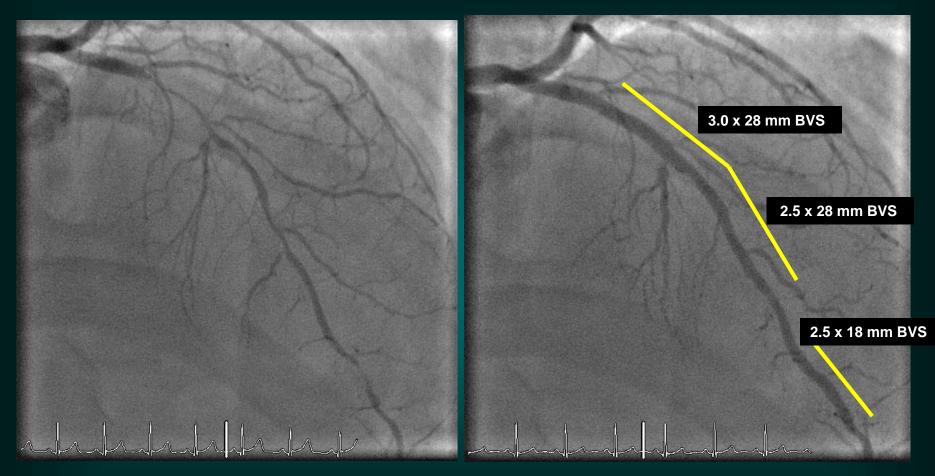
152 lesions, 167 scaffolds, mean age 62.1 (19-83) yrs	In-hospital	30 days	12 months
Deaths n	0	0	0
Non-fatal MI Q n	0	0	1
Non-fatal MI non-Q n	0	0	1
TVR n	0	0	6
TLR n	0	0	4
Scaffold thromboses n	0	0	1
Scaffold dislodgement n	0	0	0
MACE n	0	0	4

HLC 2015, J Inv Cardiol 2015


What Have We Learnt?

Scaffold Overlap and Long lesions

Absorb BVS Scaffold – Long Overlap and Malapposition



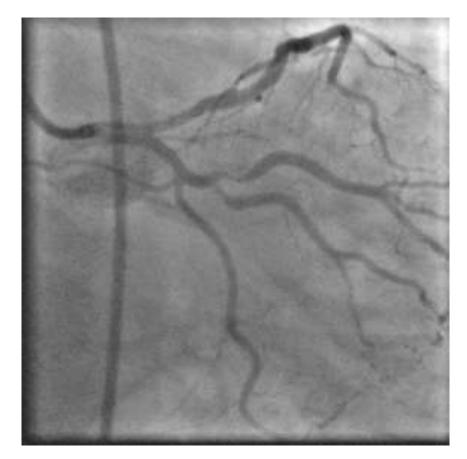
Diffuse, Long Segment Disease – Angiographic Guided BVS Implantation

36 Male, 2/12 limiting angina, Smoker, + FH

Diffuse, Long Segment Disease – Angiographic Guided BVS Implantation

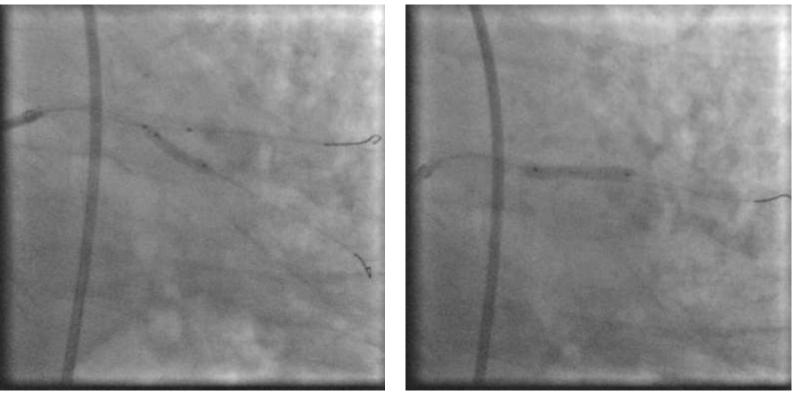
36 Male, 2/12 limiting angina, Smoker, + FH

30 month F/up – CTCA and invasive


What Have We Learnt?

Bifurcation lesions

Bifurcation Circumflex Disease - Staged 53 yo male, recent RCA DES (STEMI – PPCI) + staged Absorb BRS x 3 LAD



Set-up

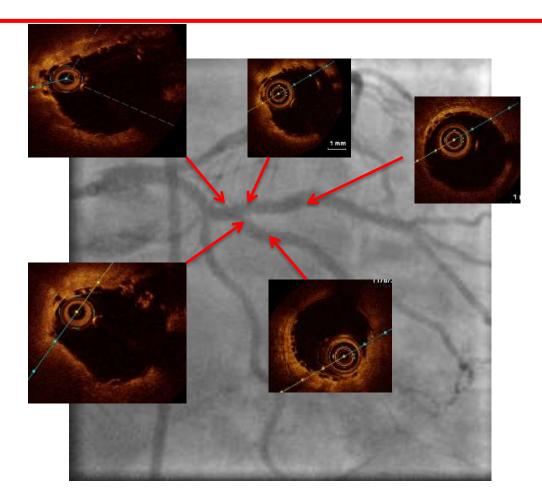
Bifurcation Circumflex PCI – 53 yo male

2.5 x 12 mm Absorb

3.0 x 18 mm Absorb

Two scaffold strategy – Modified T with FKBI

Bifurcation Circumflex PCI – 53 yo male



Final Result (OCT guided)

Bifurcation Circumflex PCI – 53 yo male

Final Result (OCT guided)

What Have We Learnt?

Scaffold Failure

Scaffold Failure

Angiographic and Optical Coherence Tomography Insights Into Bioresorbable Scaffold Thrombosis

Single-Center Experience

 Antonios Karanasos, MD, PhD; Nicolas Van Mieghem, MD, PhD; Nienke van Ditzhuijzen, MSc; Cordula Felix, MD; Joost Daemen, MD, PhD; Anouchska Autar, MD; Yoshinobu Onuma, MD, PhD; Mie Kurata, MD, PhD; Roberto Diletti, MD; Marco Valgimigli, MD, PhD; Floris Kauer, MD; Heleen van Beusekom, MD, PhD; Peter de Jaegere, MD, PhD; Felix Zijlstra, MD, PhD; Robert-Jan van Geuns, MD, PhD; Evelyn Regar, MD, PhD

Main mechanisms of both early and late BVS thrombosis

- Incomplete lesion coverage
- Under expansion
- Malapposition

Scaffold Failure

Angiographic and Optical Coherence Tomography Insights Into Bioresorbable Scaffold Thrombosis

Single-Center Experience

 Antonios Karanasos, MD, PhD; Nicolas Van Mieghem, MD, PhD; Nienke van Ditzhuijzen, MSc; Cordula Felix, MD; Joost Daemen, MD, PhD; Anouchska Autar, MD; Yoshinobu Onuma, MD, PhD; Mie Kurata, MD, PhD; Roberto Diletti, MD; Marco Valgimigli, MD, PhD; Floris Kauer, MD; Heleen van Beusekom, MD, PhD; Peter de Jaegere, MD, PhD; Felix Zijlstra, MD, PhD; Robert-Jan van Geuns, MD, PhD; Evelyn Regar, MD, PhD

OCT reveals scaffold thrombosis associated with implantation technique

DEVICE FAILURE or OPERATOR FAILURE

Karanasos A et al Circ Cardiovasc Intervent 2015

OCT Imaging with BRS Therapy -

- Excellent results can be gained with BVS in a practice of predominant angiographic guidance in Real-world disease however OCT provides invaluable adjunctive insights
- Excellent imaging of strut/lumen interface (IVUS plaque:media volume, vessel area)
- Guide vessel preparation pre-BRS implant (plaque composition/distribution) and direct scaffold diameter, length and landing zones
- Ensure optimal expansion and apposition post-BRS deployment
- Resolve ambiguous angiographic appearance during/after implantation

When to use OCT – *in an absence of randomized data*

- OCT indications as per DES planning and intra-procedural guidance
- Uncertainty in vessel sizing and final appearance
- Diffuse, small vessel disease
- Complex interventions long lesions/overlaps, calcification, bifurcations, ISR
- Liberal use early in BVS experience
- BVS failure (scaffold thrombosis, restenosis)

Thank you for your attention

Whale Sharks – Ningaloo, Western Australia