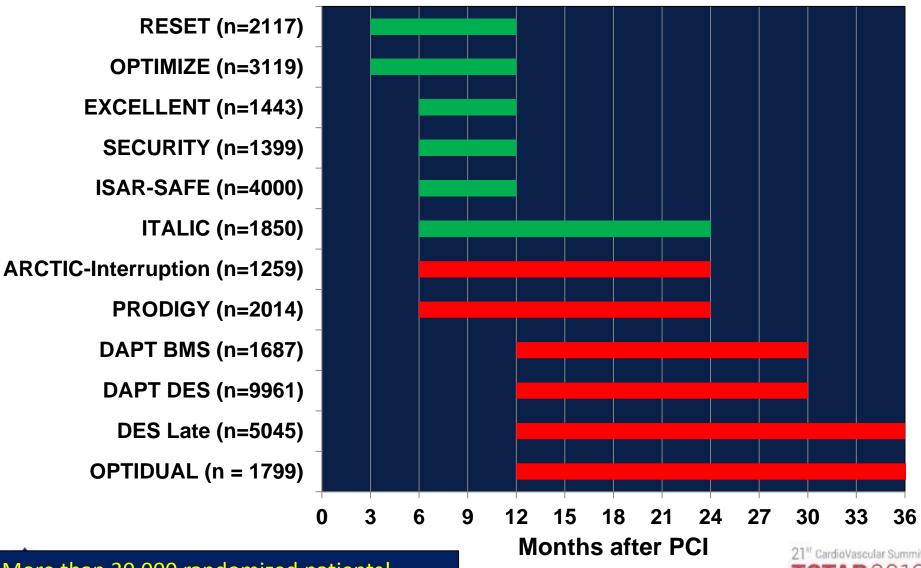
Optimal Duration of Current and Future DES and BVS

Roxana Mehran MD, FACC, FSCAI, FAHA, FESC Professor of Medicine (Cardiology), Population Health Science and Policy The Icahn School of Medicine at Mount Sinai TCTAP 2016 Seoul, Korea

Duration of DAPT: considerations after DES

1. Safety and efficacy of prolonged DAPT


2. Trade-off between thrombotic and bleeding events

- **3. Use of new-generation DES in current practice**
- 4. One size does not fit all prolonged duration cannot be applied to everyone!

Trials of DAPT Duration after Stenting: a review of the evidence

Timing of aspirin only vs. DAPT

More than 30,000 randomized patients!

The NEW ENGLAND JOURNAL of MEDICINE

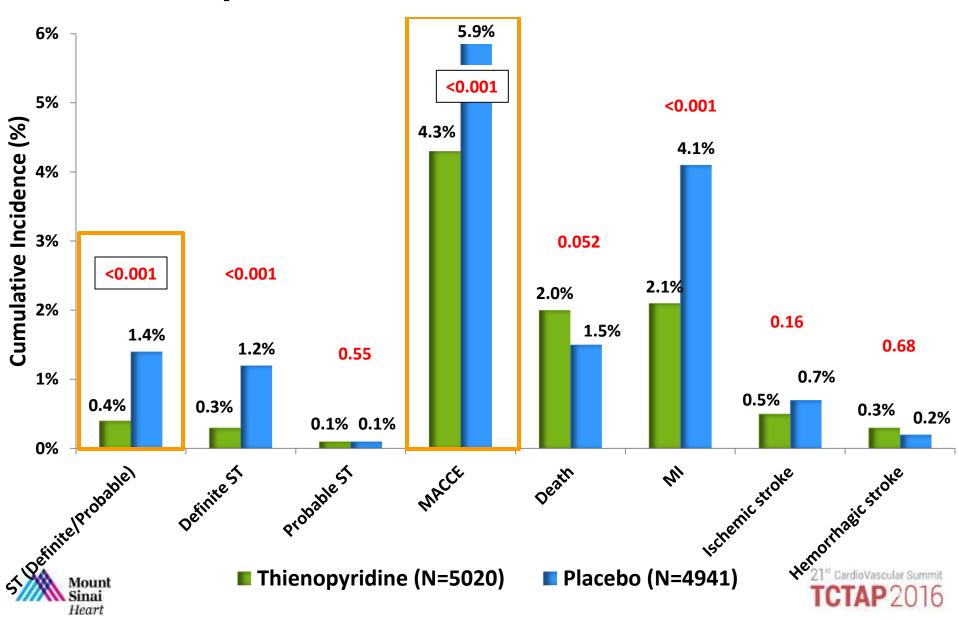
ESTABLISHED IN 1812

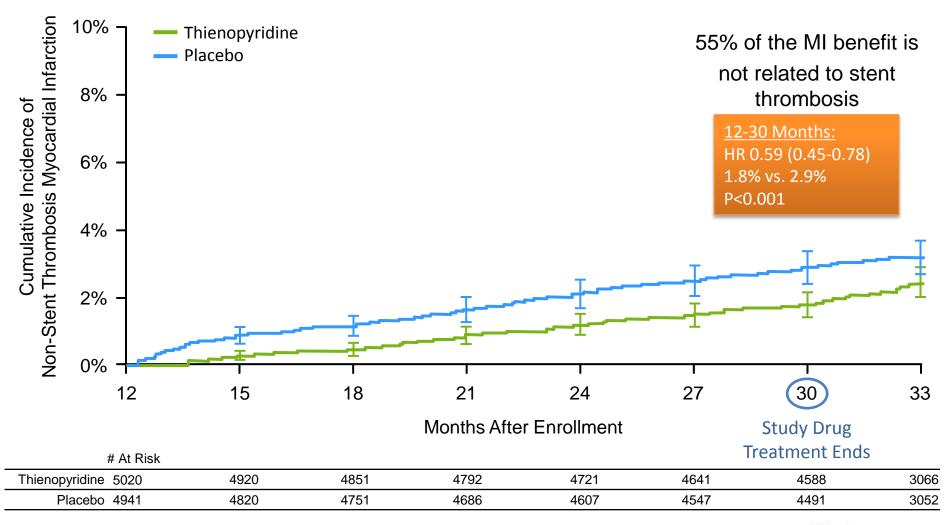
DECEMBER 4, 2014

VOL. 371 NO. 23

Twelve or 30 Months of Dual Antiplatelet Therapy after Drug-Eluting Stents

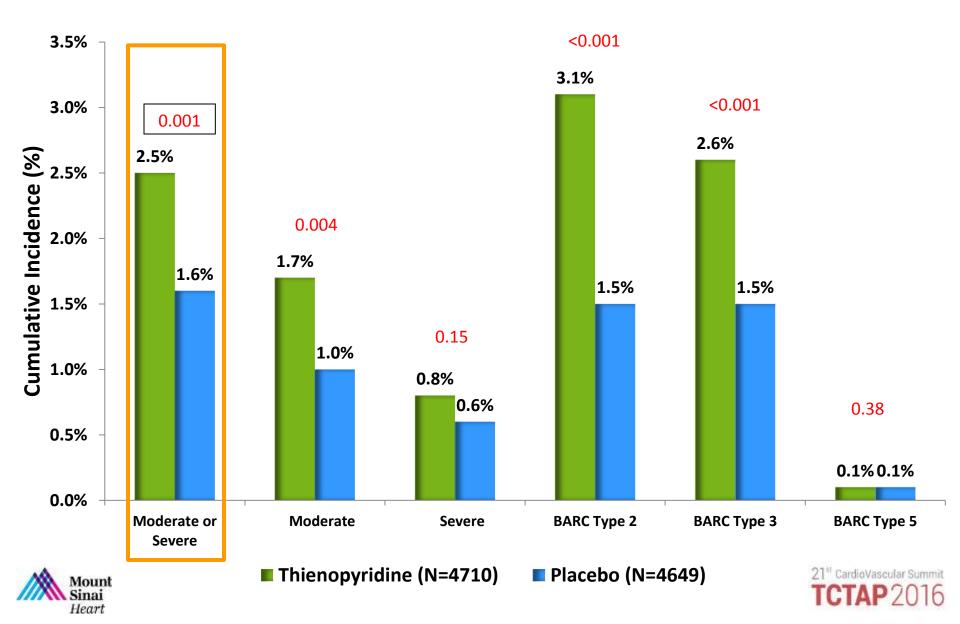
Laura Mauri, M.D., Dean J. Kereiakes, M.D., Robert W. Yeh, M.D., Priscilla Driscoll-Shempp, M.B.A., Donald E. Cutlip, M.D., P. Gabriel Steg, M.D., Sharon-Lise T. Normand, Ph.D., Eugene Braunwald, M.D., Stephen D. Wiviott, M.D., David J. Cohen, M.D., David R. Holmes, Jr., M.D., Mitchell W. Krucoff, M.D., James Hermiller, M.D., Harold L. Dauerman, M.D., Daniel I. Simon, M.D., David E. Kandzari, M.D., Kirk N. Garratt, M.D., David P. Lee, M.D., Thomas K. Pow, M.D., Peter Ver Lee, M.D., Michael J. Rinaldi, M.D., and Joseph M. Massaro, Ph.D., for the DAPT Study Investigators*


Is there a benefit in extending DAPT beyond one year?

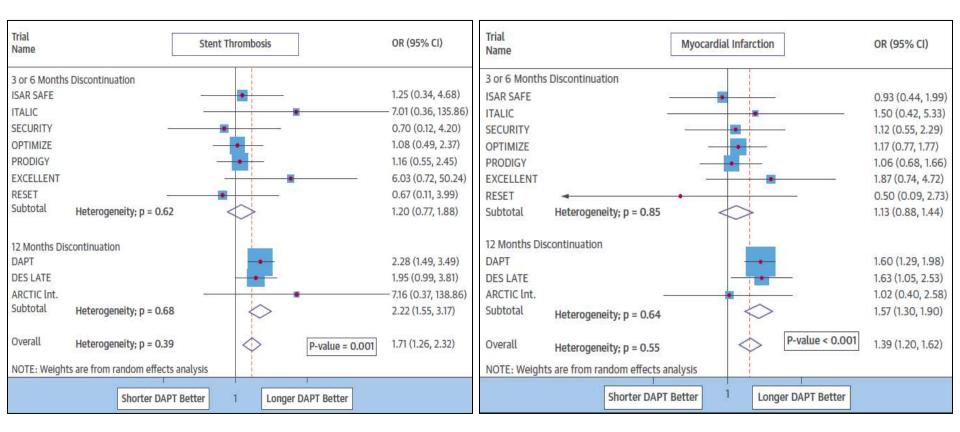

Mauri et al. NEJM 2014 DOI: 10.1056/NEJMoa1409312

Co-Primary Effectiveness End Points & Components: 12-30 Months

Non-Stent Thrombosis Myocardial Infarction

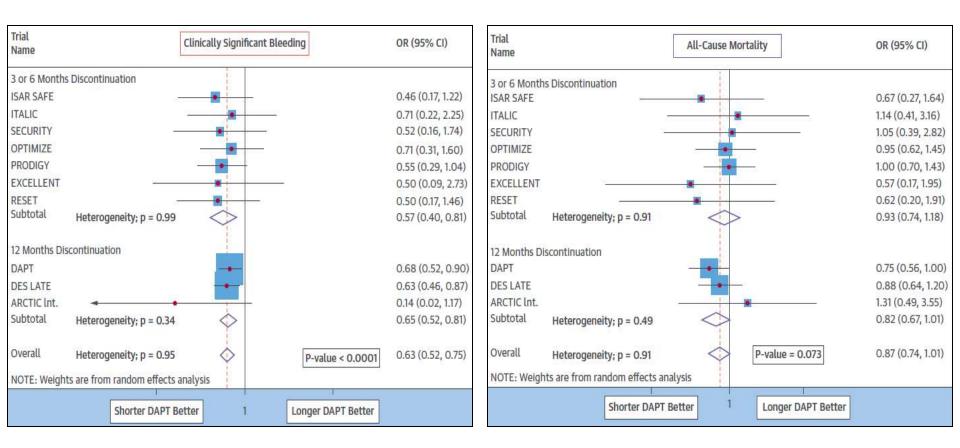


21¹¹ CardioVascular Summit


h

Primary Safety End Point (Moderate or Severe Bleeding): 12-30 Months

Longer DAPT is associated with lower risk of Stent Thrombosis and Myocardial Infarction



 Mean weighted exposure time to DAPT within the S-DAPT and L-DAPT groups was 8.5 months and 23.2 months respectively.

Shorter DAPT is associated with lower risk of Clinically Significant Bleeding and All-Cause Mortality

*CSB defined as a BARC 3 or 5, TIMI major or minor, GUSTO moderate or severe or STEEPLE major

21ⁱⁿ CardioVascular Summit

CTAP?

Mortality with Extended Duration DAPT After DES: A Pairwise and Bayesian Network Meta-Analysis of 10 RCTs and 31,666 Pts

	All-cause Death	пк	Weight	Events	Events	
Study		(95% CI)	(%)	Group 1	Group 2	<mark>22%</mark> ↑
ARTIC Interruption		32 (0.49, 3.55)		9/624	7/635	mortality
DAPT DES LATE	an a	75 (0.56, 1.02) 71 (0.45, 1.10)		74/4941 32/2514	98/5020 46/251	with
		57 (0.17, 1.95)	1.99	4/722	7/721	prolonged
ISAR SAFE ITALIC		66 (0.27, 1.63) 14 (0.41, 3.15)		8/1997 8/912	12/2003 7/910	DAPT
OPTIMIZE		95 (0.63, 1.45)		43/1563	45/1556	(<i>p</i> =0.02)
PRODIGY RESET		91 (0.61, 1.37) 62 (0.20, 1.88)		45/751 5/1059	49/750 8/1058	
SECURITY	1.0	00 (0.37, 2.66)	3.05	8/682	8/717	
I-V (I ² =0.0%, <i>p</i> =0.93); <i>p</i> value fo		82 (0.69, 0.98)	100.00	236/	287/1590	
D+L: <i>p</i> value for ES=0.02	2 🔷 0.8	32 (0.69, 0.98)	100.00	15765		
.1	.5 1 2 3 5					
Shorter DA	PT better Longer	DAPT better				
ES=effect size						1

Palmerini, Stone, et al - Lancet 2015

Duration of DAPT: considerations after DES

1. Safety and efficacy of prolonged DAPT

2. Trade-off between thrombotic and bleeding events

3. Use of new-generation DES in current practice

4. One size does not fit all – prolonged duration cannot be applied to everyone!

Trade-Off Between Stent Thrombosis and Bleeding Over Time

Incidence rates and standardized incidence risk difference for Stent Thrombosis and Clinically Significant Bleeding per 100 person/year between S-DAPT and L-DAPT

		Stent Thrombosis				Clinically Significant Bleeding						
	S-DAPT		L-DAPT				S-DAPT		L-DAPT			
Study (Ref. #)	No. of Events	IR*	No. of Events	IR*	IRD*	95% CI*	No. of Events	IR*	No. of Events	IR*	IRD*	95% CI*
ARCTIC-Interruption (21)	3	0.33	0	0	0.33	-0.04 to 0.72	1	0.11	7	0.78	-0.67	-1.29 to -0.04
DAPT (7)	69	0.80	31	0.35	0.44	0.22 to 0.67	84	0.98	124	1.42	-0.44	-0.77 to -0.12
DES-LATE (22)	25	0.29	13	0.15	0.13	0.00 to 0.27	63	0.73	99	1.14	-0.41	-0.70 to -0.13
EXCELLENT (19)	6	0.83	1	0.14	0.69	-0.02 to 1.41	2	0.28	4	0.56	-0.27	-0.94 to 0.38
ISAR-SAFE (16)	5	0.50	4	0.40	0.10	-0.48 to 0.69	6	0.60	13	1.30	-0.70	-1.56 to 0.16
ITALIC (17)	3	0.66	0	0	0.66	-0.08 to 1.40	5	1.10	7	1.54	-0.44	-1.94 to 1.05
OPTIMIZE (15)	13	0.84	12	0.77	0.06	-0.56 to 0.69	10	0.64	14	0.90	-0.26	-0.88 to 0.35
PRODIGY (23)	15	0.80	13	0.69	0.11	-0.44 to 0.66	15	0.80	27	1.44	-0.64	-1.32 to 0.03
RESET (14)	2	0.19	3	0.28	-0.09	-0.50 to 0.31	5	0.47	10	0.95	-0.48	-1.20 to 0.24
SECURITY (18)	2	0.29	3	0.42	-0.12	-0.75 to 0.49	4	0.59	8	1.12	-0.53	-1.50 to 0.43
Combined	-	-	-	-	0.21	0.11 to 0.31	-	-	-	-	-0.45	-0.62 to -0.28

For every ST event averted with L-DAPT, approximately 2.1 extra CSB events are estimated to occur (- 0.45 ST / 0.21 CSB per 100 person / year).

Incidence, Predictors, and Impact of Post-Discharge (PD) Bleeding After Percutaneous Coronary Intervention: Analysis on 8,582 patients from the ADAPT-DES Study

Impact of PD bleeding on 2-year Mortality

Post-discharge bleeding No post-discharge bleeding -A 15 Mortality (%) .0% σ <0.0001 p <0.000 3 0 18 21 24 0 3 6 12 15 Months After Discharge Number at risk PDB 535 529 520 506 492 480 467 289 461 No PDB 8,042 7,840 7,795 7,756 7,631 7,446 7,369 7,306 4,739 B 8 All-Cause Mortality (%) 6.8% 6.4% 6 4 < 0.0001 p < 0.0001 p = 0.452 1.7% 4% 0 365 365 450 540 630 030 30 90 180 270 720 **Days Since Discharge**

PD bleeding Vs. PD MI

Adjusted HR	
(95% CI)	p Value
5.03 (3.29-7.66)	< 0.0001
4.71 (2.76-8.03)	<0.0001
5.27 (3.32-8.35)	< 0.0001
1.92 (1.18-3.12)	0.009
	(95% CI) 5.03 (3.29-7.66) 4.71 (2.76-8.03) 5.27 (3.32-8.35)

Predictors of PD bleeding

Variable*	HR (95% CI)	p Value
Age (per yr increase)	1.02 (1.01-1.03)	< 0.0001
Warfarin, at discharge	2.31 (1.78-2.99)	< 0.0001
Peripheral artery disease	1.57 (1.25-1.98)	0.0001
Calcified lesion	1.25 (1.05-1.50)	0.01
Bifurcation lesion	1.32 (1.06-1.64)	0.01
Platelet reactivity units (per 10-unit decrease)	1.01 (1.01-1.02)	0.002
Baseline hemoglobin (per g/dl decrease)	1.28 (1.22-1.37)	< 0.0001

21ⁱⁿ CardioVascular Summit

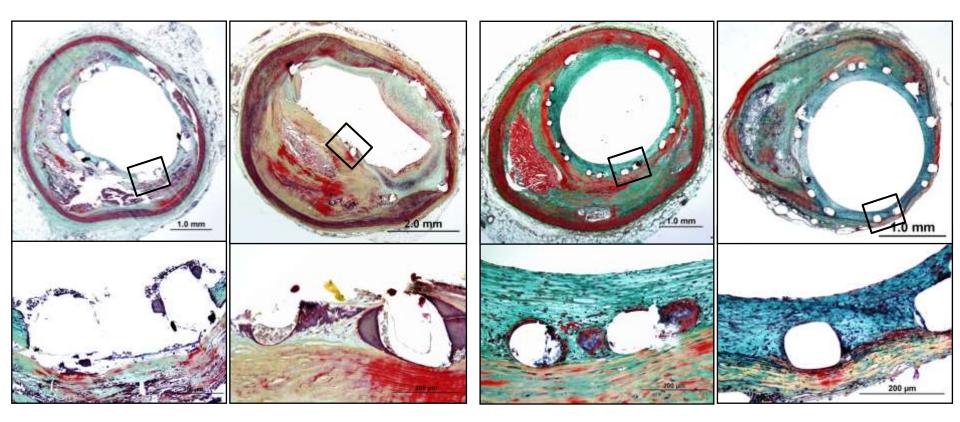
Genereux, Giustino et al. - JACC 2015

Duration of DAPT: considerations after DES

- **1. Safety and efficacy of prolonged DAPT**
- 2. Trade-off between thrombotic and bleeding events

3. Use of new-generation DES in current practice

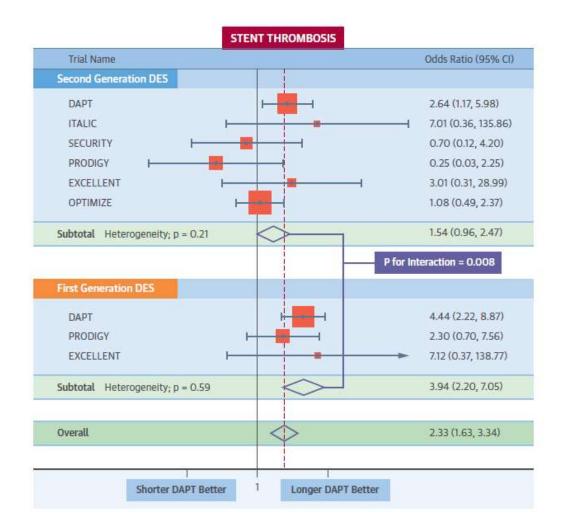
4. One size does not fit all – prolonged duration cannot be applied to everyone!



First- Versus Second-Generation DES and risk for Stent Thrombosis.. Where is the difference?

1st-generation DES

2nd-generation DES



Representative Images of 2nd- vs. 1st-generation DES in Human Coronary Arteries

Extended Duration DAPT After DES: Second vs. First Generation DES

Significant attenuation of the risk for ST with shorter DAPT in patients with 2nd-generation DES

Giustino, G. et al. J Am Coll Cardiol. 2015; 65(13):1298-310.

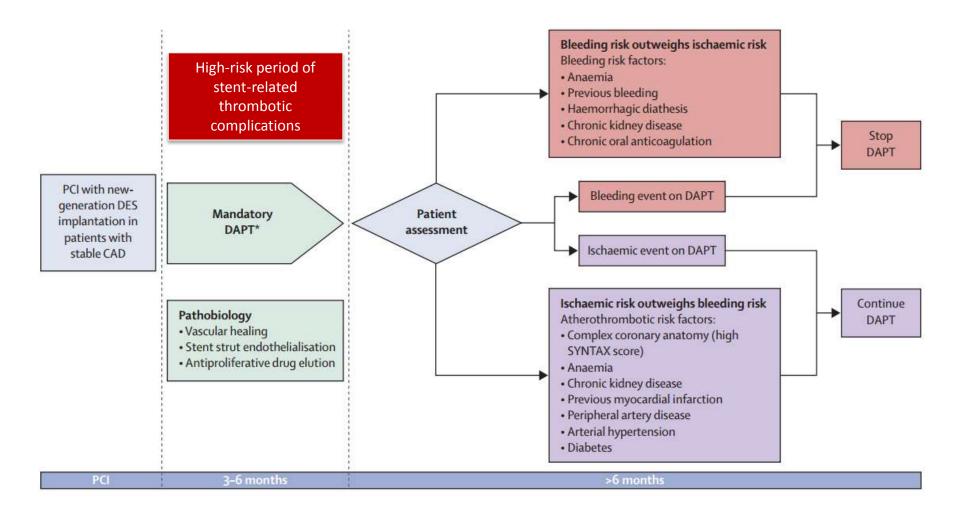
Giustino G et al. JACC 2015;65:1298–310

30 versus 12 months DAPT in patients treated with EES (N=4,703) in the DAPT trial

Outcome	Continued Thienopyridine N=2345	Placebo N=2358		HR (95% Cl)	P Value
Stent Thrombosis	0.3%	0.7%	•	0.38 (0.15, 0.97)	0.04
MACCE	4.3%	4.5%	••• •	0.89 (0.67, 1.18)	0.42
Death	2.2%	1.1%		1.80 (1.11, 2.92)	0.02
Myocardial Infarction	2.1%	3.2%	⊷ ⊷	0.63 (0.44, 0.91)	0.01
Stroke	0.6%	0.7%	· • •	0.79 (0.36, 1.75)	0.56
Bleeding	2.5%	1.3%		1.79 (1.15, 2.80)	0.01
		0.1	1	10	

J Am Coll Cardiol Intv 2016;9:138–47

Duration of DAPT after DES


- **1. Safety and efficacy of prolonged DAPT**
- 2. Trade-off between thrombotic and bleeding events
- 3. Use of new-generation DES in current practice

4. One size does not fit all – prolonged duration cannot be applied to everyone!

Algorithm for the management of dual antiplatelet therapy after newgeneration drug-eluting stent implantation in patients with stable coronary artery disease

Piccolo R, Giustino G, Mehran R, Windecker S – The Lancet 2015

21st CardioVascular Summit

CTAP

DAPT Score: How to individualize therapy?

Characteristics	Impact on Combined Treatment Effect	% of Variation Explained	DAPT Score
Age ≥75	-1.2%	6.0%	-2
Age 65 - < 75	-0.5%	2.2%	-1
Age < 65 (reference)	-	-	0
Prior PCI or MI	1.1%	14.6%	1
Stent Diameter < 3 mm	0.9%	10.1%	1
CHF or LVEF < 30%	1.9%	9.9%	2
MI at Presentation	1.0%	9.6%	1
Paclitaxel-Eluting Stent	1.0%	8.8%	1
Cigarette Smoker	0.7%	4.3%	1
Diabetes	0.6%	4.3%	1

Low DAPT Score (< 2)

NNT to prevent ischemia = 153 NNH to cause bleeding 64

High DAPT Score ≥ 2

NNT to prevent ischemia = 34NNH to cause bleeding = 272

21st CardioVascular Summit

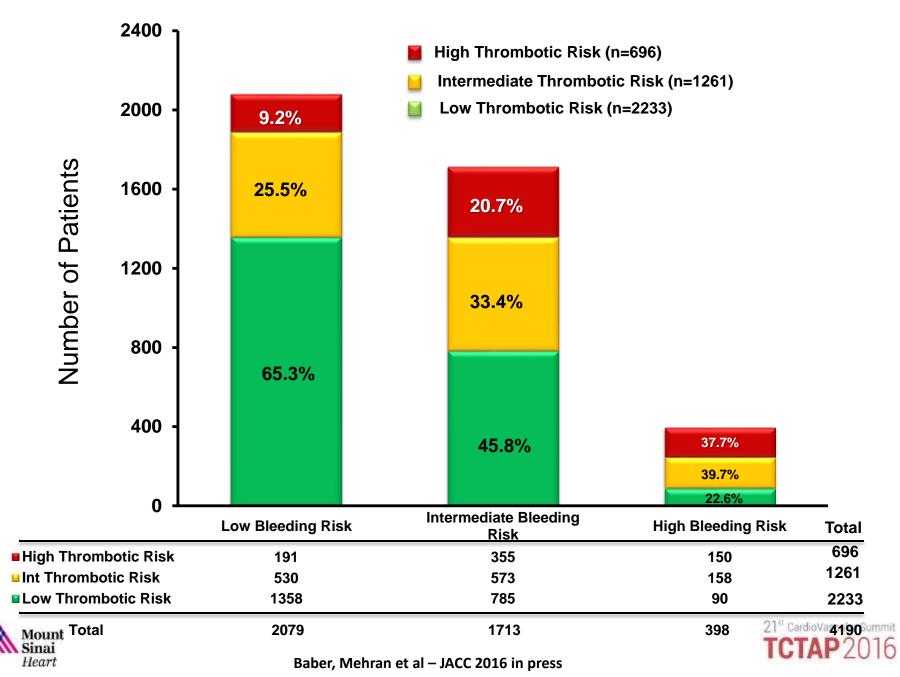
Yeh, R et al. JAMA 2016

Predicting Risks for Coronary Thrombosis and Major Bleeding After PCI with DES: Risk Scores from PARIS Registry

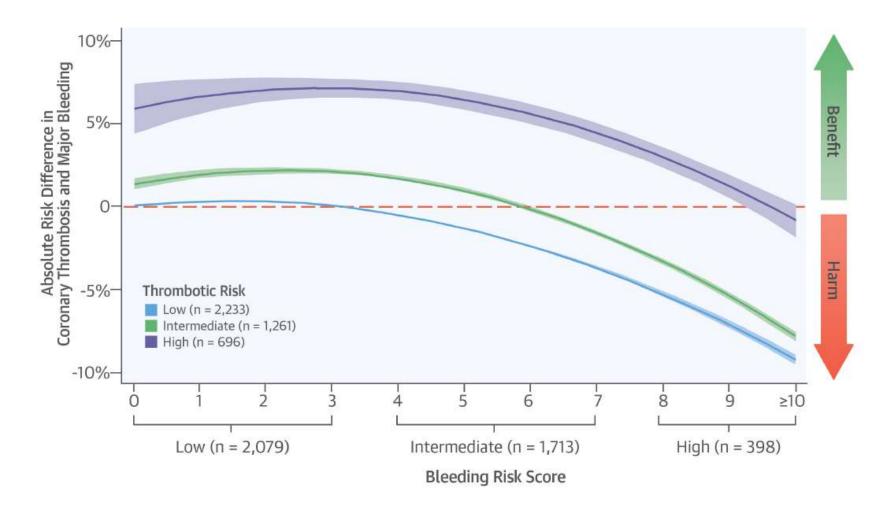
Integer Risk Score for Major Bleeding

Integer Risk Score for Coronary Thrombosis

Parameter	Score					
	< 50	50-59	60-69	70-79	>80	
Age, years	0	+1	+2	+3	+4	
	<2	5	25-34.9	> 3	5	
BMI, kg/m²	+2	2	0	+2		
Current	Yes			No		
Smoking	+2	2		0		
	Pres	ent		Absent		
Anemia	+3	3		0		
	Pres	Present		Absent		
CKD*	+2	2		0		
Triple Therapy	Ye	Yes		No		
on discharge	+2	2		0		


Score			
None	Non-Insulin	Insulin	
0	+1	+3	
No	Yes, Tn (-)	Yes, Tn (+)	
0	+1	+2	
	Yes	No	
	+1 0		
Ρ	Absent		
+2		0	
	Yes		
	+2	0	
	No		
	+2	0	
	None 0 No 0	NoneNon-Insulin0+1NoYes, Tn (-)0+1Yes+1+1Present+2Yes+2YesYesYes	

*Defined as CrCl < 60 mL/min/1.73 m2



Cross-Classification by Thrombotic and Bleeding PARIS Risk Score Categories

Risk/Benefit Trade-off with Prolonged DAPT as a Function of Thrombotic and Bleeding Risk

Baber, Mehran et al – JACC 2016 in press

21^{it} CardioVascular Summit

CTAP?

Three Approaches to Improve Early and Late DES Outcomes

1. Metallic DES with bioabsorbable polymers

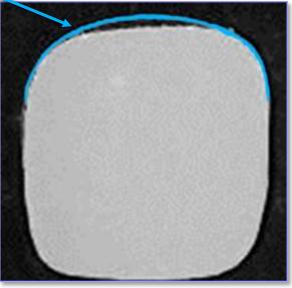
2. Metallic DES, polymer-free

3. Bioresorbable scaffolds (BRS)



Abluminal Bioabsorbable Polymer SYNERGY Stent (BSC)

Drug & Polymer Coating



Everolimus Drug PLGA Polymer

SEM of coating (x5000)

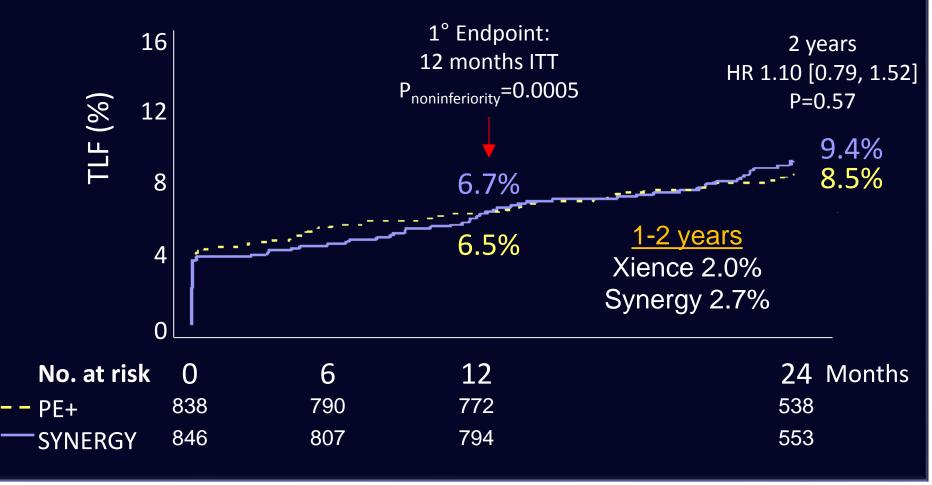
Abluminal (4µm)

Luminal

Platform Platinum chromium • 74 μg (0.0029in)

Polymer Coating PLGA

- Abluminal
- 4 µm thick
- Undetectable in 4 mo


Drug Everolimus • 100 μg/cm²

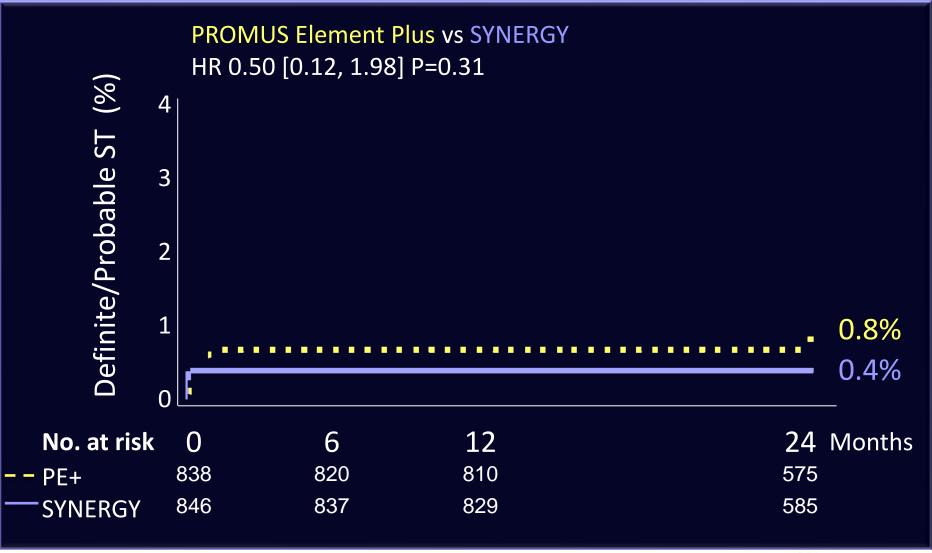
• Elutes in 3 months

TCTAP2016

EVOLVE II TLF at 1 and 2 years

21^{tr} CardioVascular Summit

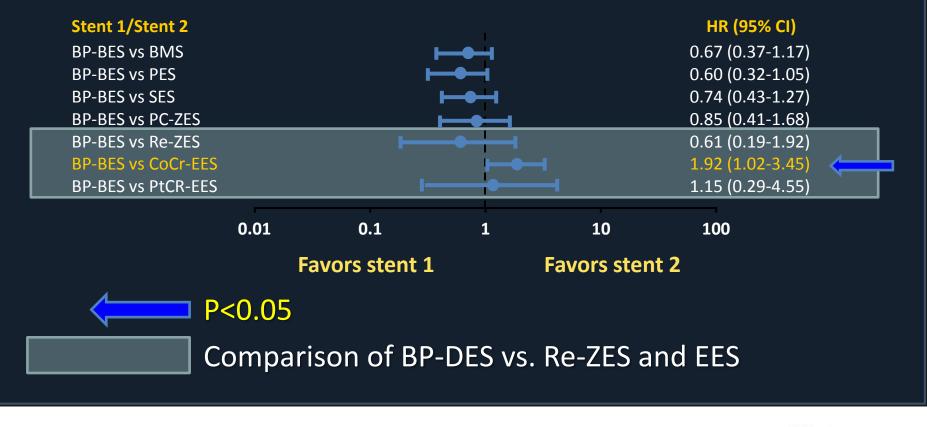
TAD


Stent Thrombosis at 2 years

21^{tr} CardioVascular Summit

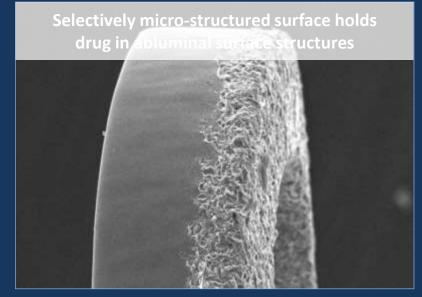
16

TAP?



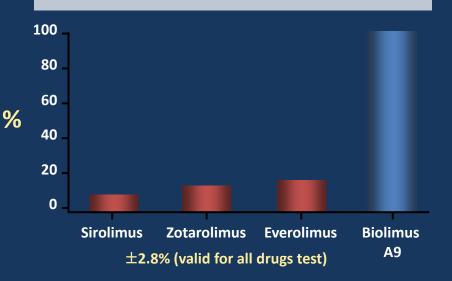
Bioabsorbable Polymer-based vs. Durable Polymerbased DES and BMS

Evidence network: 89 RCTs, 85,490 pts


Long-term Definite Stent Thrombosis

21^{ir} CardioVascular Summit

BioFreedom Drug Coated Stent (DCS)



12 mo in-stent LL ~0.17 mm (n=31)

Potential Advantages:

- Rapid drug transfer to vessel wall (98% within one month²)
- Avoid possible polymer-related adverse effects
- Safe to shorten DAPT?

Biolimus A9 is 10x more lipophilic than sirolimus¹

LEADERS FREE Trial Design

Objective: To determine in patients at high bleeding risk, using one month DAPT, whether the BioFreedom DCS is as safe and more effective than a Gazelle BMS

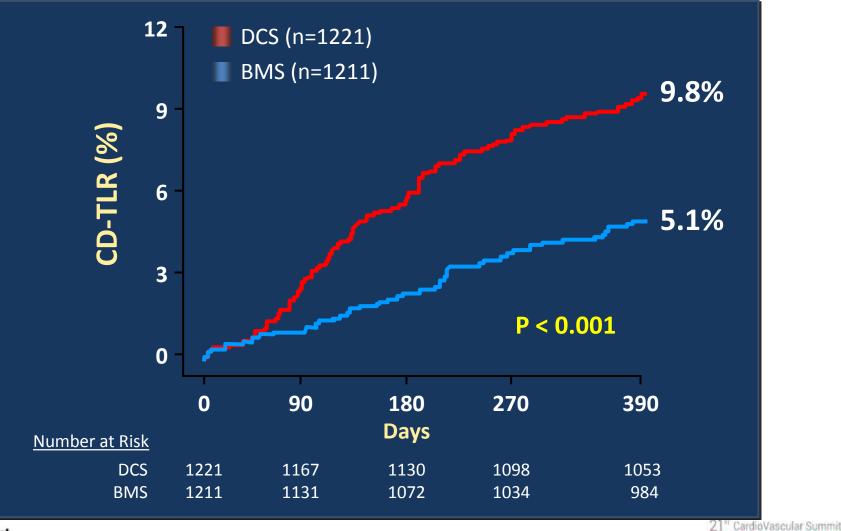
> Prospective, double-blind randomized (1:1) trial In 2466 high bleeding risk (HBR) PCI patients

BioFreedom™ DCS VS. Gazelle™ BMS	
--	--

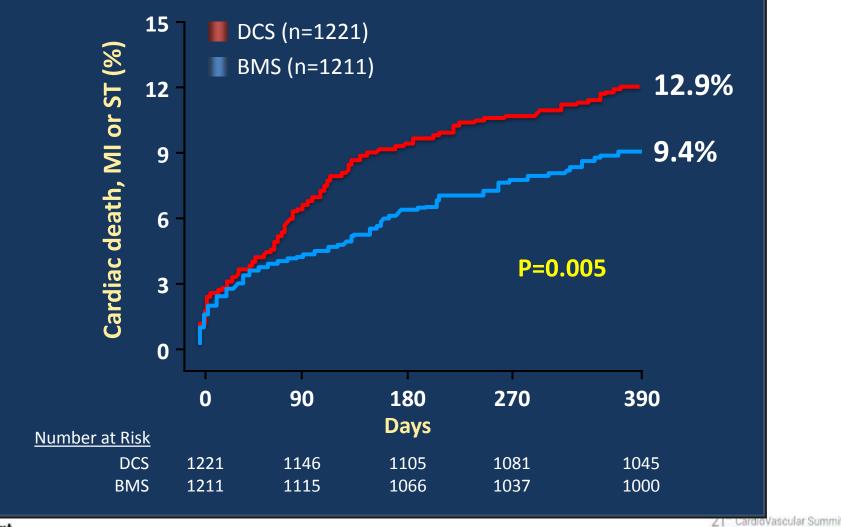
DAPT mandated for 1 month only, followed by long-term SAPT

• Primary efficacy endpoint:

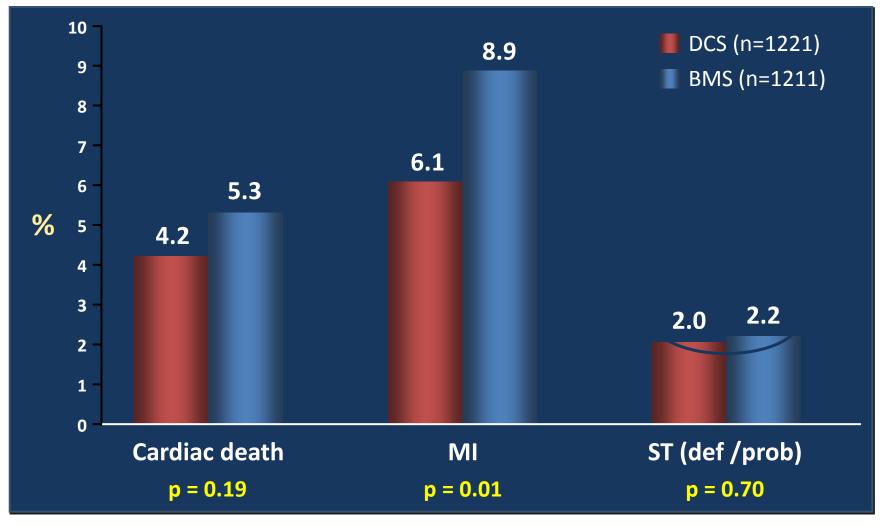
Clinically-driven TLR at 1 year (superiority)


• Primary safety endpoint:

Composite of cardiac death, MI, definite / probable stent thrombosis at 1 year (non-inferiority then superiority)


Leaders Free: Primary Efficacy Endpoint (Clinically-Driven TLR)

TAD


Leaders Free: Primary Safety Endpoint (Cardiac Death, MI, ST)

Leaders Free:

Components of the Safety Endpoint (1-year)

Bioresorbable Vascular Scaffolds (BRS)

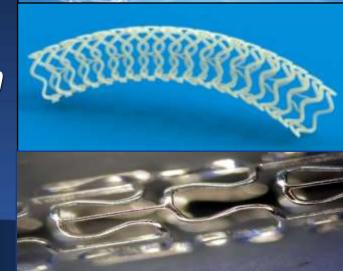
PLLA

PLLA (eluting everolimus)

PLLA (eluting novolimus)

> Iodinated tyrosinederivative (eluting sirolimus)

Magnesium (eluting sirolimus)


lgaki-Tamai

Abbott Absorb

Elixir DESolve

Reva Fantom

Optimal Duration of DAPT with BVS:

- 1. Current trials have recommended at least 12 months of DAPT for patients.
- 2. BVS available is only first generation
- **3. Optimal duration is unknown**

Conclusions

- 1. After DES, longer DAPT is associated with protection against ischemic events but increases the risk of bleeding significantly as well as possibly all-cause mortality!
- 2. Spontaneous bleeding events are strongly and consistently associated with increased risk of mortality. These parameters are difficult to capture in clinical trials, but extremely important to the patient.
- 3. New-generation DES have significantly improved the stent-related thrombotic events thus attenuating the benefit of prolonged DAPT in this population- the math just doesn't work for most patients!
- 4. Prolongation of DAPT <u>after the mandatory DAPT period</u> for protection against **non-stent related thrombotic events** might be applied judiciously after careful evaluation of the individual atherothrombotic (stent-related and non-stent-related) and hemorrhagic risk.

<u>The Optimal</u> duration of DAPT in most DES patients should be <u>shorter</u> rather than longer, but should be <u>customized</u> based on the ischemic benefit and bleeding risk for each patient

21st CardioVascular Summit

