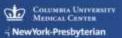
Efficacy and Safety of TAVR - 2016

Martin B. Leon, MD


Columbia University Medical Center Cardiovascular Research Foundation New York City

April 28, 2016

Disclosure Statement of Financial Interest TCTAP 2016; Seoul, Korea; April 26-29, 2016

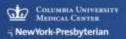
Martin B. Leon, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation / Financial Relationship

• Grant / Research Support

- Consulting Fees / Honoraria
- Shareholder / Equity


Company

Abbott, Boston Scientific, Edwards Lifescience, Medtronic, St. Jude Medical

Abbott, Boston Scientific, Medtronic, St. Jude Medical

Claret, Coherex, Elixir, GDS, Medinol, Mitralign, Valve Medical

TAVR in 2016: *Landscape*

• TAVR is a "Breakthrough" Technology -Dramatic global growth and universal acceptance with seemingly unlimited future potential!

TAVR is Available in More Than 65 Countries Around the World

>250,000 total implants to date

Estimated Global TAVR Growth

Global TAVR Units			
2019	2025 ~\$5B		
February 19, 2016 United States: Medical Technology: Cardiovascular Devices	Goldman Sachs		
Raising TAVR forecasts; market to reach \$7bn+ b	Equity Research y 2025E		
SOURCE: Credit Suisse TAVI Comment –January 8, 2015. ASP assumption for 2024 and 2025 based on analyst model. Revenue split assumption in 2025 is 45% U.S., 35% EU, 10% Japan, 10% ROW			
In the next 10 years TAVP growth will increase XAL			

In the next 10 years, TAVR growth will increase X4!

TAVR in 2015: *Landscape*

- TAVR is a "Breakthrough" Technology -Dramatic global growth and universal acceptance with seemingly unlimited future potential!
- TAVR growth has been fueled by:
 - the multi-disciplinary heart team
 - commitment to evidence-based medicine
 - rapid technology enhancement
 - simplification of the procedure
 - striking reduction in complications

PARTNER THV Evolution

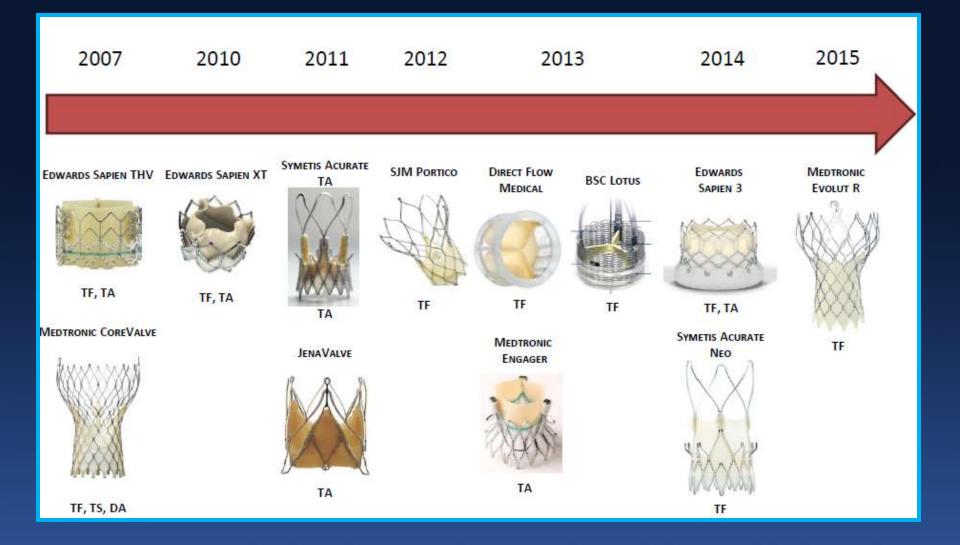
PI - 2007

Edwards SAPIEN™ THV 23 mm and 26 mm

PII - 2010

PII S3 - 2013

Edwards SAPIEN 3™ THV 20 mm, 23 mm, 26 mm, and 29mm


PARTNER enrolled >9,000 patients in FDA studies (including 4 RCTs) with 3 generations of TAVR systems in ~ 7 years!

Edwards SAPIEN XT ™ THV 23 mm, 26 mm, and 29mm

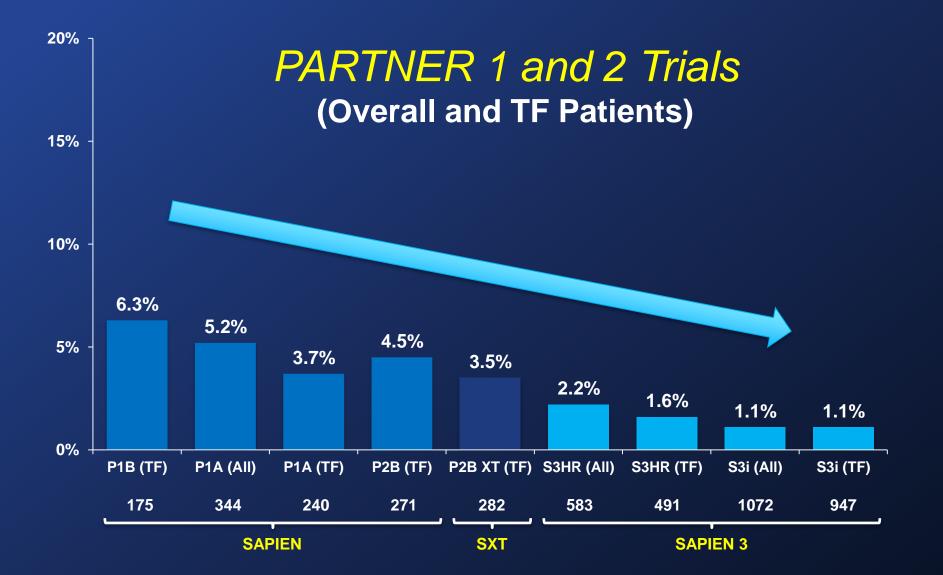
TAVR Systems with CE-Approval (2007-15)

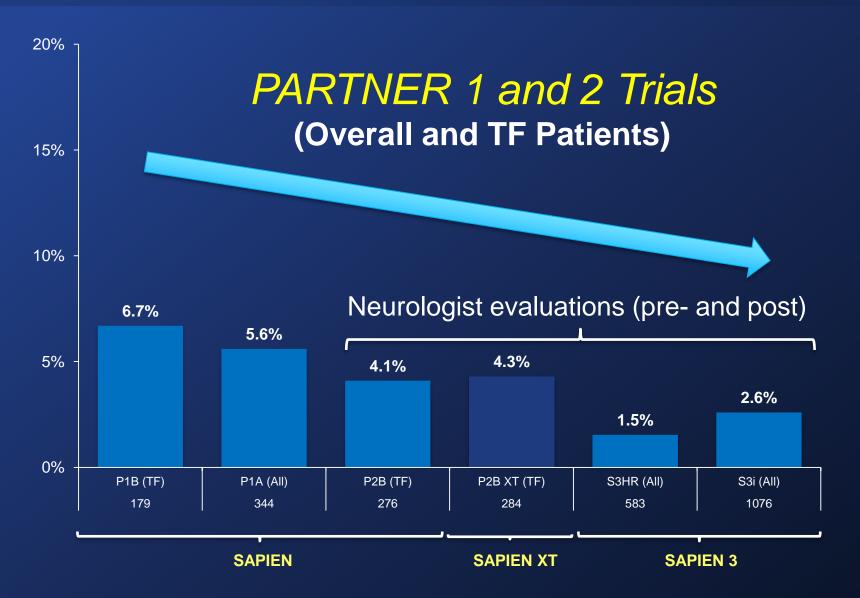
Courtesy of S. Windecker

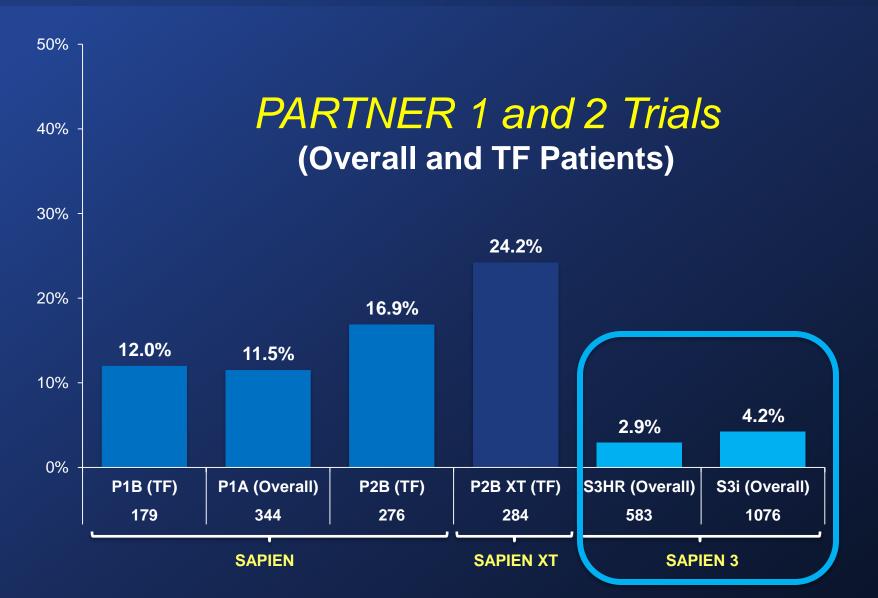
COLUMBIA UNIVERSITY MEDICAL CENTER

TAVR in 2016 Procedural Considerations

There is a strong trend (led by many physician thought leaders) to maximally simplify TAVR procedures!


- preferential percutaneous transfemoral access
- reduced use of general anesthesia
- less intra-procedural TEE
- eliminate pre-dilatation
- decreased use of complex and costly hybrid cath lab/OR environments
- early discharge programs

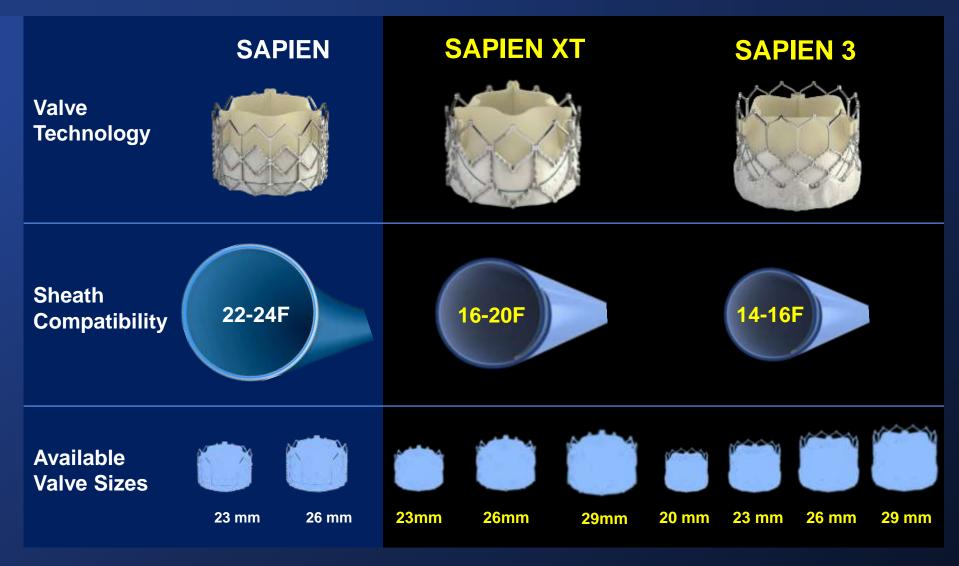

All-Cause Mortality at 30 Days Edwards SAPIEN Valves (As Treated)

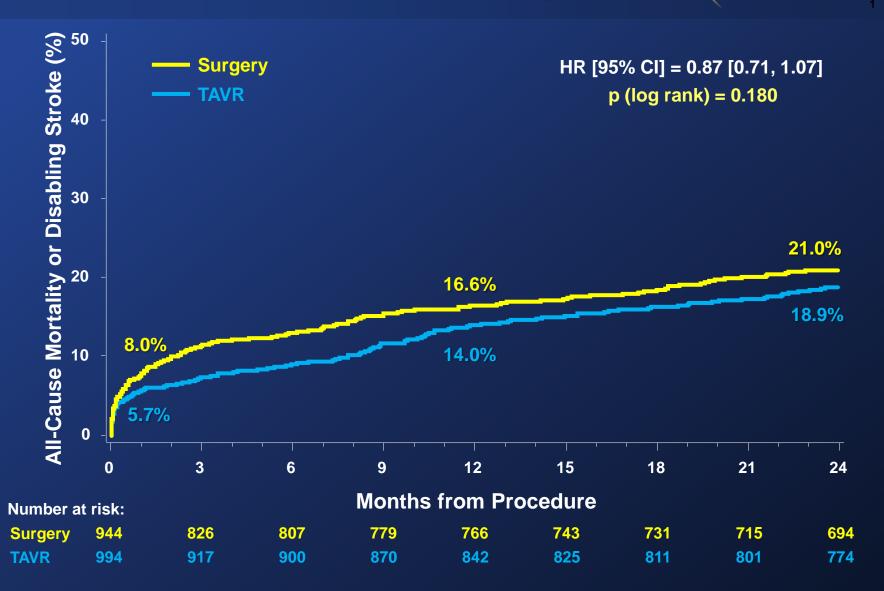

Strokes (All) at 30 Days Edwards SAPIEN Valves

Moderate/Severe PVL at 30 Days Edwards SAPIEN Valves

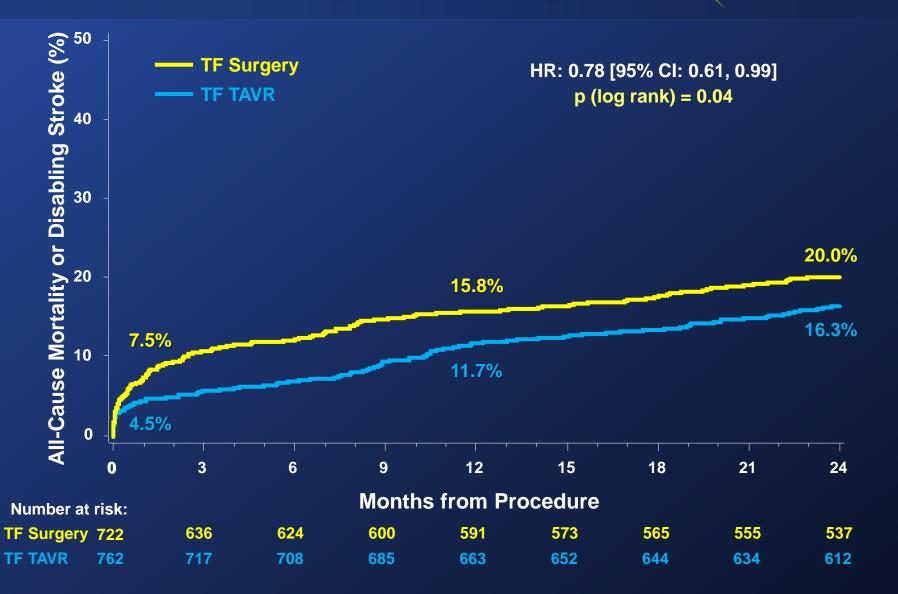
TAVR in 2015: *Landscape*

• TAVR has now "conquered" the intermediaterisk patient population (ie. STS 4-8%):


- "hard" endpoints of death and stroke (esp. the TF subgroup and the S3i propensity analysis)
- multiple secondary endpoints cw surgery
- reduced procedural complications
- reduced length-of-stay
- improved hemodynamics
 - reduced PVR



PARTNER SAPIEN Platforms Device Evolution


Primary Endpoint (AT) All-Cause Mortality or Disabling Stroke

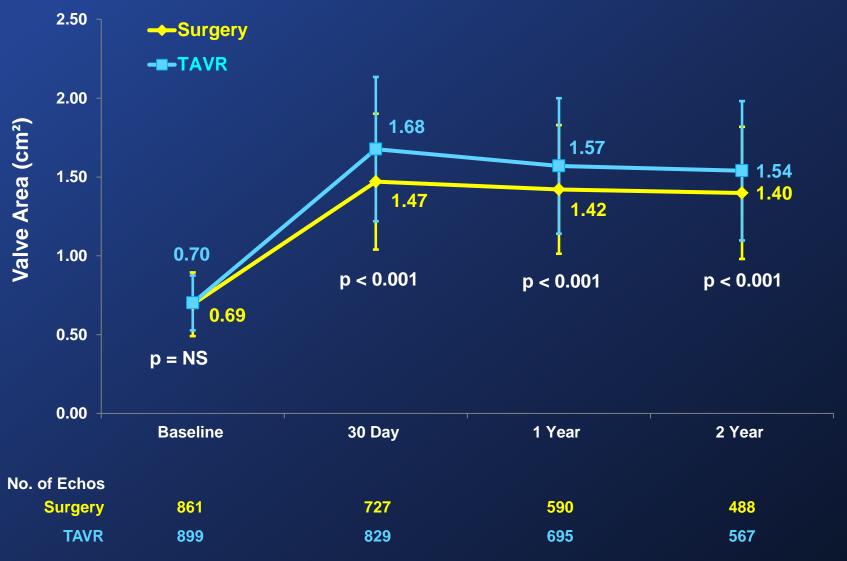
THE

PARTN

TF Primary Endpoint (AT) All-Cause Mortality or Disabling Stroke

THE

PARTN


Other Clinical Endpoints (ITT) At 30 Days and 2 Years

	30 Days		2 Years			
Events (%)	TAVR (n = 1011)	Surgery (n = 1021)	p-value*	TAVR (n = 1011)	Surgery (n = 1021)	p-value*
Rehospitalization	6.5	6.5	0.99	19.6	17.3	0.22
МІ	1.2	1.9	0.22	3.6	4.1	0.56
Major Vascular Complications	7.9	5.0	0.008	8.6	5.5	0.006
Life-Threatening / Disabling Bleeding	10.4	43.4	<0.001	17.3	47.0	<0.001
AKI (Stage III)	1.3	3.1	0.006	3.8	6.2	0.02
New Atrial Fibrillation	9.1	26.4	<0.001	11.3	27.3	<0.001
New Permanent Pacemaker	8.5	6.9	0.17	11.8	10.3	0.29
Re-intervention	0.4	0.0	0.05	1.4	0.6	0.09
Endocarditis	0.0	0.0	NA	1.2	0.7	0.22

*Event rates are KM estimates, p-values are point in time

Echocardiography Findings (VI) Aortic Valve Area

тне

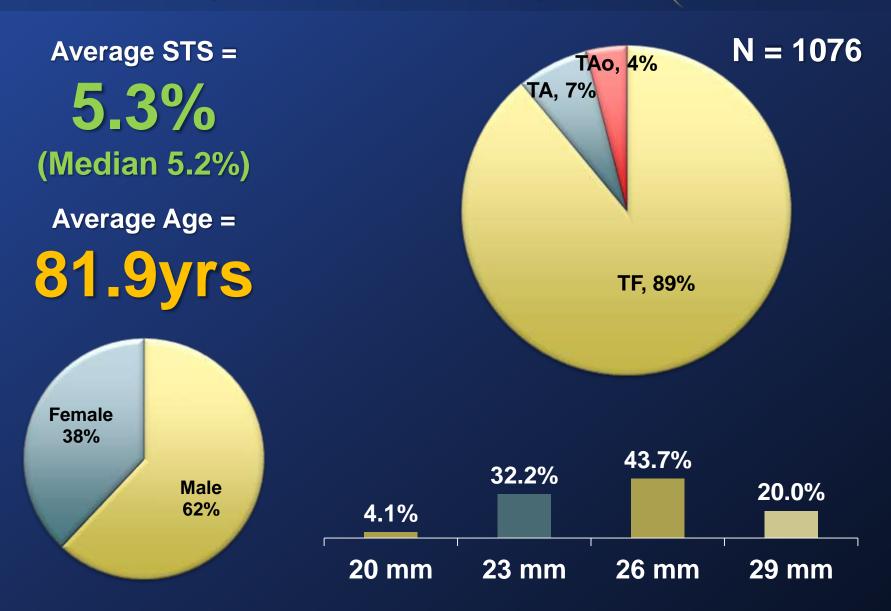
PARTN

Error bars represent ± Standard Deviation

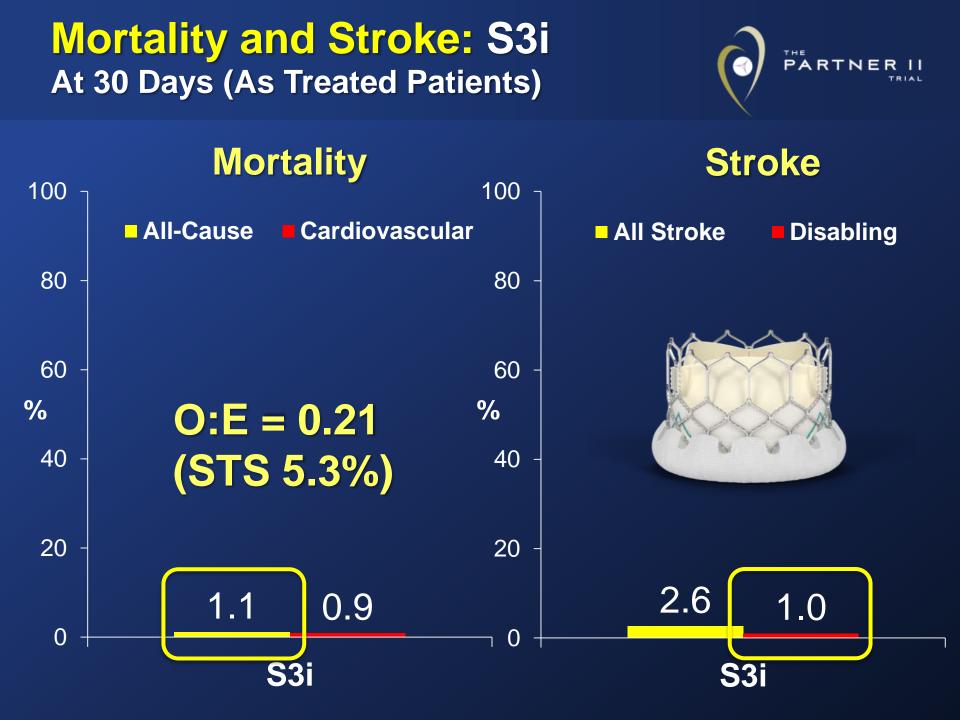
European Heart Journal Advance Access published March 31, 2016

European Heart Journal doi:10.1093/eurheartj/ehw112 FASTTRACK CLINICAL RESEARCH

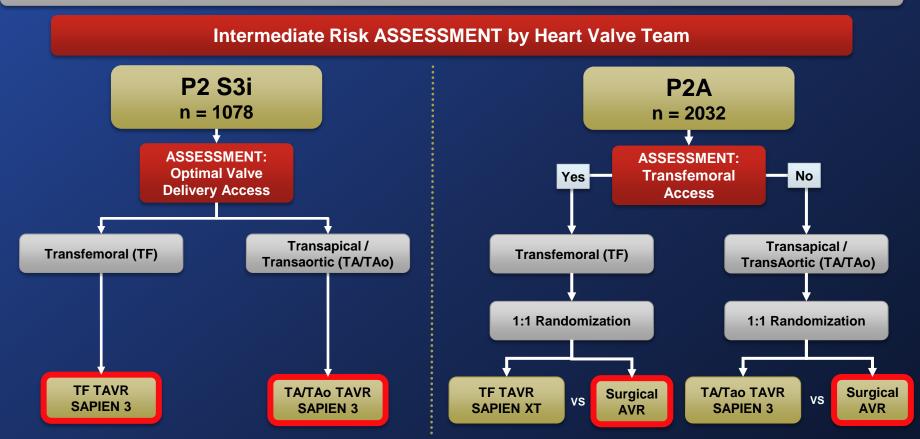
Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis


Susheel Kodali^{1*}, Vinod H. Thourani², Jonathon White¹, S. Chris Malaisrie³, Scott Lim⁴, Kevin L. Greason⁵, Mathew Williams⁶, Mayra Guerrero⁷, Andrew C. Eisenhauer^{8,9}, Samir Kapadia¹⁰, Dean J. Kereiakes¹¹, Howard C. Herrmann¹², Vasilis Babaliaros², Wilson Y. Szeto¹², Rebecca T. Hahn¹, Philippe Pibarot¹³, Neil J. Weissman¹⁴, Jonathon Leipsic¹⁵, Philipp Blanke¹⁵, Brian K. Whisenant¹⁶, Rakesh M. Suri¹⁰, Raj R. Makkar¹⁷, Girma M. Ayele¹⁸, Lars G. Svensson¹⁰, John G. Webb¹⁵, Michael J. Mack¹⁹, Craig R. Smith¹, and Martin B. Leon¹

Susheel Kodali, MD on behalf of The PARTNER Trial Investigators


ACC 2015 | San Diego | March 15, 2015

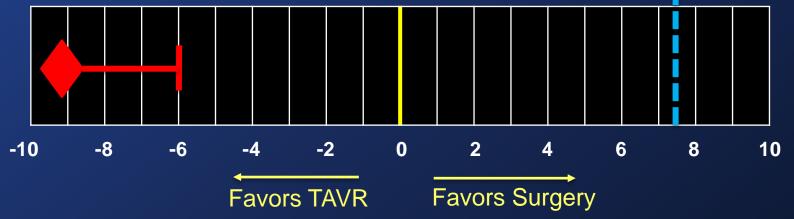
Baseline Patient Characteristics S3i Patients (n=1076 at 51 sites)


PARTNE

The PARTNER 2A and S3i Trials Study Design

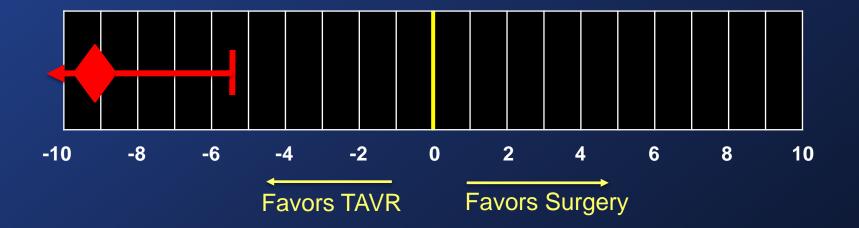
Intermediate Risk Symptomatic Severe Aortic Stenosis

Primary Endpoint: All-Cause Mortality, All Stroke, or Mod/Sev AR at One Year (Non-inferiority Propensity Score Analysis)


Primary Endpoint - Non-inferiority Death, Stroke, or AR ≥ Mod at 1 Year (VI)

Weighted Difference -9.2% Upper 1-sided 95% CI -6.0%

Non-Inferiority p-value < 0.001



Primary Non-Inferiority Endpoint Met

Primary Endpoint - Superiority Death, Stroke, or AR ≥ Mod at 1 Year (VI)

Weighted Difference -9.2% Upper 2-sided 95% CI -5.4% Superiority Testing p-value < 0.001

Superiority Achieved

Unadjusted Time-to-Event Analysis All-Cause Mortality and All Stroke (AT)

Paravalvular Regurgitation THE 3-Class Grading Scheme (VI) PARTN P < 0.001 P < 0.001 ≥ Moderate 100% 1.5% Mild 80% 39.8% 60% Severe Moderate Mild 40% None/Trace 20% 0%

	TAVR Surgery	TAVR Surgery
No. of echos	30 Days	1 Year
P2A Surgery	755	610
S3i TAVR	992	875

The PARTNER 2A and S3i Trial Clinical Implications

 The results from the PARTNER 2A randomized trial and the S3i propensity score analysis in > 3,100 intermediate-risk patients with severe aortic stenosis, provide strong evidence that SAPIEN 3 TAVR when compared with surgery <u>improves</u> <u>clinical outcomes and is the preferred therapy!</u>

The PARTNER 2A and S3i Trial The NEJM and Lancet On-line

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter aortic valve replacement versus surgical valve $\rightarrow \mathscr{W}$ replacement in intermediate-risk patients: a propensity score analysis

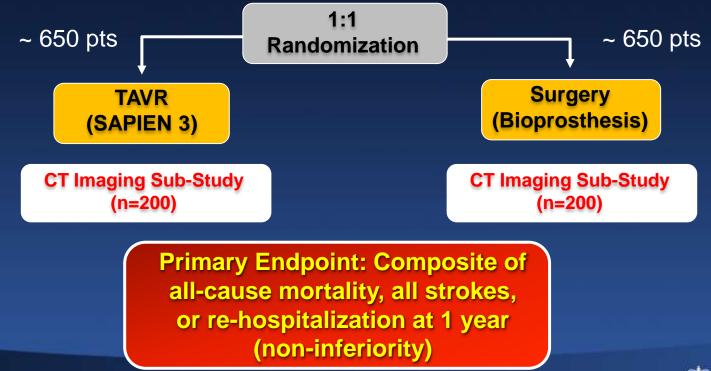
Vinod H Thourani, Susheel Kodali, Raj R Makkar, Howard C Herrmann, Mathew Williams, Vasilis Babaliaros, Richard Smalling, Scott Lim, S Chris Malaisrie, Samir Kapadia, Wilson Y Szeto, Kevin L Greason, Dean Kereiakes, Gorav Ailawadi, Brian K Whisenant, Chandan Devireddy, Jonathon Leipsic, Rebecca T Hahn, Philippe Pibarot, Neil J Weissman, Wael A Jaber, David J Cohen, Rakesh Suri, E Murat Tuzcu, Lars G Svensson, John G Webb, Jeffrey W Moses, Michael J Mack, D Craig Miller, Craig R Smith, Maria C Alu, Rupa Parvataneni, Ralph B D'Agostino Jr, Martin B Leon

Jonathon Leines, Rob John G Wellt, Jeffrey W Brian K. Whisenant, M.D., Robert W. Hodson, M.D., Jeffrey W. Moses, M.D., Alfredo Trento, M.D., David L. Brown, M.D., William F. Fearon, M.D.,
 Philippe Pibarot, D.V.M., Ph.D., Rebecca T. Hahn, M.D., Wael A. Jaber, M.D.,
 William N. Anderson, Ph.D., Maria C. Alu, M.M., and John G. Webb, M.D., for the PARTNER 2 Investigators*

TAVR in 2016: Future

• TAVR will continue to expand to lower-risk patients and other clinical indications - Due to relentless evidence-based clinical research with multiple ongoing and planned clinical trials!

STS database 2002-2010 (141,905 pts)


Courtesy of N. Piazza

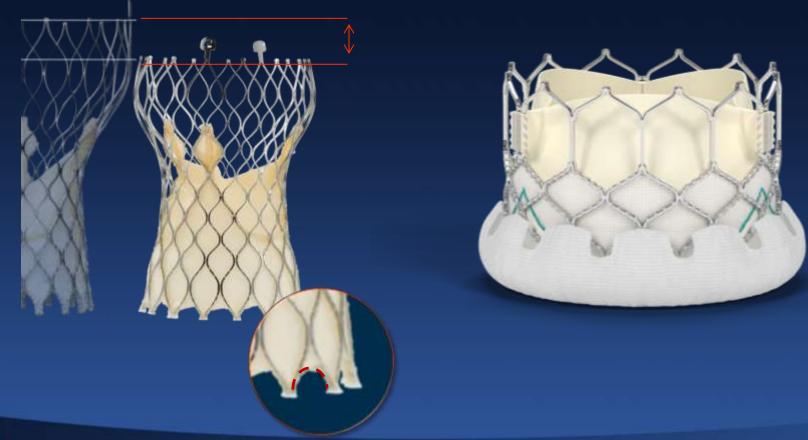
PARTNER 3 Low Risk Trial

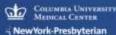
Symptomatic Low-Risk Severe AS Patients Heart Team determination of risk eligibility (STS < 4)

Expanding Clinical Indications *A TAVR Crossroads?*

- Bioprosthetic valve failure (aortic and mitral)
- Intermediate and low-risk patients
- Low-flow, low-gradient AS
- Bicuspid AV disease
- AS + concomitant disease (CAD, MR, AF)
- Severe asymptomatic AS
- Moderate AS + CHF
- High-risk AR

TAVR in 2016: Future


- TAVR will continue to expand to lower-risk patients and other clinical indications - Due to relentless evidence-based clinical research – multiple ongoing and planned clinical trials!
- TAVR associated technology advances will continue to favorably impact clinical outcomes and help to simplify procedures
 - new TAVR systems
 - accessory technologies
 - advanced imaging systems



Current "Standards" for TAVR

MDT Evolut R Edwards Sapien 3

TAVR Systems Global Inventory (#23)

- Sapien 3
- Evolut R

Sv

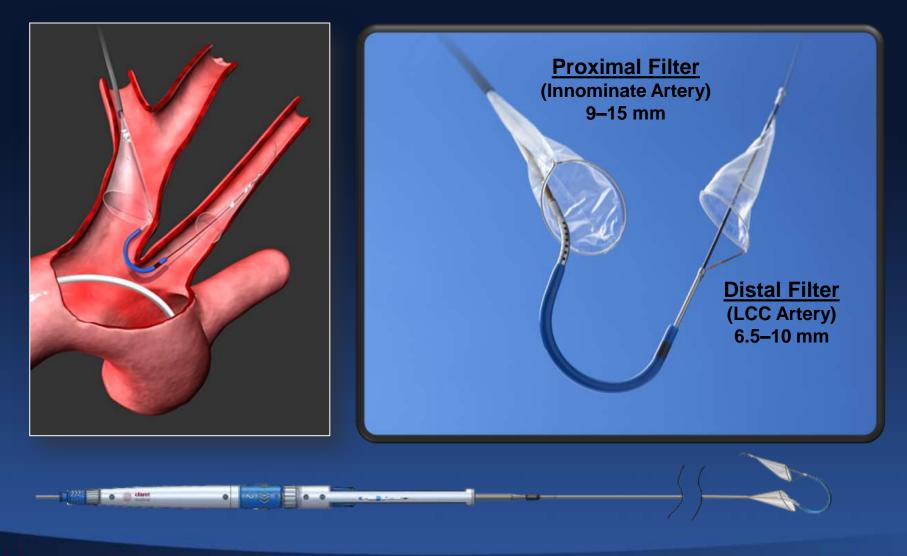
Currently In Patients

L. gager

- Portico
- Centera

- Venus A
- Shanghai Valve
- Trinity

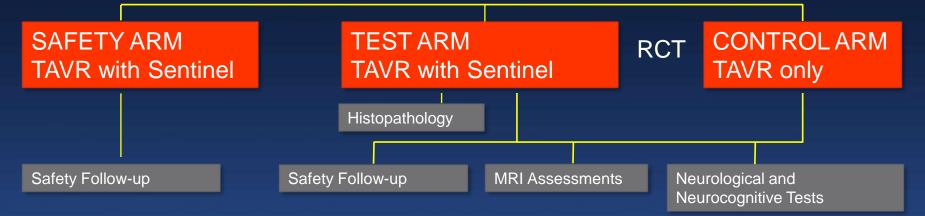
• Co'


Future Contenders?

- Jan
- MyVal
- HLT
- NVT (Germany)
- Zurich TEHV

COLUMBIA UNIVERSITY MEDICAL CENTER - NewYork-Presbyterian

Claret Sentinel Cerebral Protection System (CPS)



SENTINEL Study Design (TAVR RCT)

US Co-Pls: Samir Kapadia Susheel Kodali German Co-Pl: Axel Linke Population: Subjects with severe AS with clinical indications for TAVR with the Edwards Sapien THV/XT/S3 or Medtronic CoreValve/Evolut-R N=296 subjects randomized 1:1:1 at sites in the U.S and Germany.

Primary (superiority) Efficacy Endpoint: Reduction in median total new lesion volume assessed by 3T DW-MR by baseline subtraction (3-7 days) *Primary (non-inferiority) Safety Endpoint:* Occurrence of all MACCE at 30 days

TAVR in 2016: Future

- TAVR growth will be highly dependent upon strategies to manage high-cost technologies in constrained healthcare systems and a healthy dose of "humility" (recognizing and addressing "gap" areas)
 - site management; operational and economic efficiencies
 - emphasize the multi-disciplinary heart team
 - known unknowns and new imponderables (subclinical valve thrombosis, valve durability, and optimal pharmacotherapy)

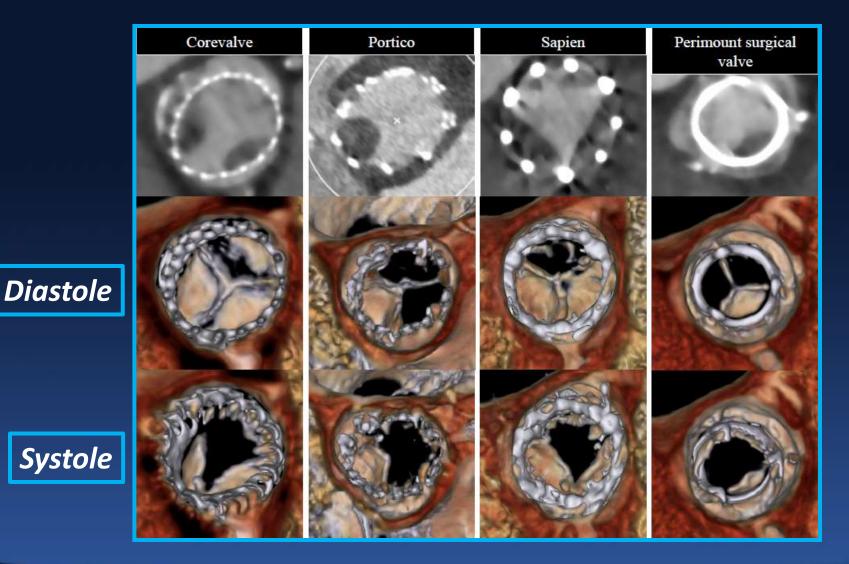
TAVR in 2016: *Economic Considerations*

Warning: Medicare May Be Bad for Your Heart

Aortic valve replacements are superior to open-heart surgery and less risky. So why are they hard to get?

By SCOTT GOTTLIEB April 11, 2016 7:14 p.m. ET 324 COMMENTS

Wall Street Journal April 11, 2016



Can we afford to use the best therapies for our patients?

Valve Leaflet Abnormalities

Makkar, et al. NEJM 2015

TAVR Adjunct Pharmacology Customized Patient-Based Therapy

BEFORE	DURING	AFTER
Acetylsalicylic acid (ASA)	<section-header><text><text><text><text></text></text></text></text></section-header>	ASA + CLOPIDOGREL Acetylsalicylic acid (ASA) Arte trial Non anti-VKA Oral Anticoagulant ± ASA: Eceller Eceller Eceller

"Outpatient" Same-Day TAVR Sacre-Coeur Hospital; Montreal, CN

Featured Case Reports

Same Day Discharge after Transcatheter Aortic Valve Replacement: Are We There yet?

Philippe Généreux,^{1,2*} MD, Philippe Demers,¹ MD, and Frédéric Poulin,¹ MD

Early discharge after transcatheter aortic valve replacement (TAVR) has been increasingly reported, and is now becoming routinely performed in experienced TAVR centers. However, to the best of our knowledge, no case has been described where a patient was safely discharged on the same the day of the procedure. This report will present the case of a patient who underwent a successful transfemoral TAVR and was safely discharged home the same day. Specific requirements and criteria are proposed to ensure the safety of this approach. © 2015 Wiley Periodicals, Inc.

Demers

Key words: TAVR; TAVI; discharge

Genereux

Pullalu

Palisaitis

Expanded TAVR Clinical Indications *A Transformative Technology at the Crossroads?*

