APRIL 28-MAY 1, 2015 COEX, SEOUL, KOREA

2015 TCTAP, Imaging & Physiology

CT Perfusion

Dong Hyun Yang, MD

Department of Radiology, Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

69/M, Effort chest pain

Heavily calcified plaque

Reversible perfusion defect in RCA territory

COLLEGE MEDICINE

42/M, Effort chest pain Positive TMT, stage 4 (II, III, aVF, V4-6)

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Others

42/M, Effort chest pain Positive TMT, stage 4 (II, III, aVF, V4-6)

Others

edical Center

CT virtual angioscopy

Aberrant origin of RCA from left coronary sinus with interarterial course

1224 COTTERE MEDICINE

42/M, Effort chest pain Positive TMT, stage 4 (II, III, aVF, V4-6)

Short Axis (Apex->Base)

medical Center

Compression of RCA prox.

Aorta

RCA

PA

Characteristics of tests commonly used to diagnose the presence of CAD

DODODODODDD	Diagnosi	s of CAD
にってっていっていいいのでってってい	Sensitivity (%)	Specificity (%)
Exercise ECG ^a	45-50	85-90
Exercise stress echocardiography	80-85	80-88
Exercise stress SPECT	73-92	63-87
Dobutamine stress echocardiography	79-83	82-86
Dobutamine stress MRI ^b	79-88	81-91
Vasodilator stress echocardiography	72-79	92-95
Vasodilator stress SPECT	90-91	75-84
Vasodilator stress MRI ^b	67-94	61-85
Coronary CTA ^c	95-99	64-83
Vasodilator stress PET	81-97	74-91

CAD = coronary artery disease; CTA = computed tomography angiography, ECG = electrocardiogram; MRI = magnetic resonance imaging; PET = positron emission tomography; SPECT = single photon emission computed tomography.

^aResults without/with minimal referral bias; ^bResults obtained in populations with medium-to-high prevalence of disease without compensation for referral bias; ^oResults obtained in populations with low-to-medium prevalence of disease. This slide corresponds to Table 12 in the full text.

Eur Heart J 2013;34:2949-3003. doi:10.1093/eurheartj/eht296

Diagnostic Accuracy > 50% stenosis, Per-segment analysis

Small diameter of artery, poor image quality, and high calcium are cause of inaccuracy !

>2	10	419	50	89%	90%	49%	99%
1.5-2	3	40	3	77%	91%	20%	99%
<1.5	3	12	6	45%	96%	29%	98%
Image quality							
Good Moderate Poor Calcium	9 11 10	206 117 148	34 15 10	89% 84% 86%	94% 85% 78%	58% 40% 30%	99% 98% 98%
None	5	108	37	78%	97%	54%	99%
Moderate	17	197	17	92%	81%	49%	98%
High	25	166	5	95%	47%	38%	97%

Sensitivity decreased with vessel diameter and increased with high calcium.

• Specificity decreased with poor image quality and severe calcification.

Meijboom W.B. JACC 2008;52:2135-44

First Article of CTP, 2005

Summary 16-ch CT (GE, LightSpeed 16) 12 patients Reference: Thallium SPECT Population: suspected CAD Sensitivity (per-vessel): 90% Specificity (per-vessel): 79% First article

Kurata A. Mochizuki T. et al . 2005 Cir J 69:550-557

Published Data: Early Results

Group	PI	Year	Pts	Sens/Spec (%)	Ref.	СТ
MGH	Cury,RC Hoffmann, U	2009 2010	33 35	94/74 91/91	QCA/SPECT QCA	64 DSCT (Siemens)
Johns Hopkins	George, RT	2009 2012	27 50	81/85 72/91	QCA/SPECT QCA/SPECT	64 ch, 320 ch (Toshiba)
Monash H (Australia)	Sujith, K	2012 2012	42 40	91/72 95/87	FFR FFR	320 ch (Toshiba)
Grosshadern (Germany)	Bamberg, F	2012	36	93/87	FFR	128 DSCT, Dynamic (Siemens)
MUSC (South Carolina)	Schoepf, J	2010 2012	10 20	86/98 86/98	MRI MRI/SPECT	128 DSCT, <mark>Dynamic</mark> (Siemens)
Mount Alvernia H. (Singapore)	Но, КТ	2011	35	83/78	SPECT	128 DSCT, <mark>Dynamic</mark> (Siemens)
Cedars-Sinai, LA	Berman, DS	2010	30	92/86	SPECT	64 DSCT (Siemens)
Korea (Kunkook U.)	Ko, SM	2011	41	91/72	MRI	64 DSCT-DE mode (Siemens)
Innsbruck (Austria)	Feuchtner, GM	2012	39	96/95	MRI/QCA	128 DSCT-FLASH mode (Siemens)

Early Result of CTP: Visual Analysis

CT perfusion vs. SPECT Comparable diagnostic accuracy !

Blankstein et al . 2009 JACC 54:1072-84

TPR: semi-quantitative method

First quantification on static CTP!

Transmural perfusion ratio (TPR)

TPR = Subendocardial Density Subepicardial Density

Summary

64-ch CT or 256-ch CT (Toshiba) Stress first protocol

27 patients

Reference: QCA plus SPECT

Population: Abnormal SPECT

Sensitivity (per-vessel): 79%

Specificity (per-vessel): 91%

 Acceptable diagnostic accuracy of CTA/CTP combination.
 Quantification of static CTP may be useful.

George RT et al . 2009 Circulation CV Img 2:174-182

TPR: semi-quantitative method

CTP vs.

CTA +

SPECT

100

85

28

100

0.93

Per-vessel territories

Sensitivity

Specificity

PPV

NPV

AUC

CTP vs.

SPECT

50

90

55

87

0.70

CTP was a better predictor !

CTA (>50%)

vs. SPECT

25

85

31

81

0.55

Summary
320-ch CT (Toshiba) Rest first protocol
50 patients
Reference: SPECT or CTA (50% >) + SPECT
Population: Suspected CAD who underwent SPECT
Sensitivity (per-vessel): 50%
Specificity (per-vessel): 89%
CTP was a better predictor

George RT et al . 2012 Circulation CV Img 5:333-340

CTP-Visual analysis vs. FFR

	CTA ≥ 50%	CTP (+)	CTA ≥ 50% & CTP(+)	CTA ≥ 50% OR CTP(+)	QCA ≥ 50%
Sensitivity	93	76	68	100	71
Specificity	60	84		47	62
PPV	68	82	97	63	63
NPV	90	79	77	100	70
Accuracy	76	80	84	73	66

CTA \geq 50% & CTP(+) was 98% specific for ischemia. CTA < 50% and normal CTP was 100% specific for ischemia.

Ko BS et al . 2012 Eur Heart J 33:67-77

ledical Center

CORE320 Study: CT perfusion

- Multicenter studies (n=391)
- Validation of CT perfusion using QCA / SPECT as a reference standard

Rochitte CE, et al. Eur Heart J 2013

First CT Perfusion Case at AMC

Static vs. Dynamic Scan

Time Attenuation Curve (TAC) 300 -Dynamic CT Perfusion Enhancement (HU) Static CT Perfusion 150 ---- Arterial TAC --- Myocardial TAC 60 20 80 40 Scan time (sec)

Koo HJ, Yang DH et al. In submission

Dynamic Scan

40 / M Effort chest pain for 1 month

Koo HJ, Yang DH et al. In submission

Static Scan

- Arterial TAC

97-166

28-96

60 Scan time (sec) 80

167-236

Contrast enhancement: Static

Motion Dynamic (Retrospective ECG-gating)

Koo HJ, Yang DH et al. In submission

Static vs. Dynamic Scan

Static perfusion

Cine CT

Static scan

✓ Low radiation dose
 ✓ Easy to perform

 Same with CCTA
 ✓ Wall motion abnormality

 ✓ No quantification of blood flow
 ✓ Suboptimal enhancement time

 → low lesion detectability

Dynamic scan

- ✓ Blood flow quantification
- Pros ✓ Better detectability (not validated)
 - ✓ High radiation dose
 - ✓ Hard to perform
 - Need high-end CT
- Cons machine

(30 s)

- Long breath hold time

Medical Center

CTP/CTA protocol at AMC

- 128-ch dual source CT or 64-ch dual source CT
 Siemens, Definition (FLASH)
- Single energy, static protocol
- Stress-first
- No beta-blocker
- Nitroglycerin: 2 min. before rest CTP (CTA)
- 100 kV for reduce radiation dose
- Tube current modulation and ECG-pulsing
- Bolus triggering method (NOT test bolus)
- NO Delayed enhancement scan

CT Perfusion Protocol at AMC

• AMC protocol (25 minutes)

Second degeneration dual-source CT

Medical Center

Published Data: CTP vs. FFR

Year	Author	Pts NO. (Vessels)	Technique	Effective do se, mSv	Reference stand ard	Parameters	Sensitivity,%	Specificity,%
2011 RAD	Bamberg et al.	33 (96)	Dynamic / Rest first	CTA 3.1 CTP 10.0	FFR ≤ 0.75	СТА	100	51
						CTA plus CTP	93	87
2012 JACC	Ko et al.	40 (103)	Static / Rest first	CTA 4.7 CTP 4.5	FFR ≤ 0.80	СТА	95	78
ing						CTP (TPR)	74	66
						CTA plus CTP (visual)	87	95
2012 EHJ	Ko et al.	42 (86)	Static / Stress first	CTA 5.3 CTP 4.8	FFR ≤ 0.80	СТА	93	60
						CTP (visual)	76	84
2013 JACC	Bettencourt et al	101 (303)	Static / Stress first	CTA-CTP 5.0	FFR ≤ 0.80	СТА	95	67
						CTA plus CTP (visual)	71	90
2013 Heart	Greif et al.	65 (195)	Dynamic/ Rest first	CTA 2.9 CTP 9.7	FFR ≤ 0.80	СТА	97	53
						CTA plus CTP (MBF)	95	74
2014 EHJ	Rochitte et al. (CORE320)	381 (1143)	Static/ Rest first	CTA-CTP 9.3	SPECT plus CAG ≥ 50%	СТА	92	51
						CTP (TPR + Visual)	80	74
2014 JACC	Wong et al.	75 (97)	Static/ Rest first	CTA 4.6 CTP 4.8	FFR ≤ 0.80	СТА	89	65
						CTA plus CTP (visual)	76	89

CT Perfusion Analysis: Qualitative

- Very smooth kernel (B10f) reconstruction
- Multiphase image (0% ~ 90% of R-R interval, 10% increment)
- 10-mm thick MPR image with narrow window setting
- Diagnostic clue of perfusion defect
 - Low density lesion conforming coronary territory
 - Persistent lesion on cine image
 - DDx) Transient motion or beam-hardening artifact
 - Complementary regional wall motion abnormality on cine image

Visual Assessment of Perfusion Defect in CT Perfusion

AMC protocol – Static CT perfusion

PERFUSE Registry

<u>Prospective</u> <u>Evaluation of</u> StRess Coronary Per<u>FUS</u>ion CT R<u>Egistry</u>

 Each site: 1 cardiologist 1 radiologist

> 1300 cases (2015.02)

Medical Center

Early Results: CTP visual assessment

	СТР	ста	CTP / CTA	QCA,	
	GIP	GIA	Integration	DS ≥ 50%	
True positive	69	85	77	74	
False positive	6	33	14	11	
True negative	118	91	110	113	
False negative	17	1	9	12	
Sensitivity,%	80	99	90	86	
Specificity,%	95	73	89	91	
PPV,%	92	72	85	87	
NPV,%	87	99	92	90	
Kappa statistic	0.77	0.68	0.78	0.77	
Accuracy	89	84	89	88	

Subgroup Analysis

	High Agastone calcium score > 400 (N=63)			Multivessel disease (N=56)		
	Sensitivity	Specificity	IDI index	Sensitivity	Specificity	IDI index
CTP visual assessment	85	100	0.38*	76	91	-0.10
CTA, DS ≥ 50%	100	50	-	100	45	-
Integration of CTP and CTA	94	87	0.31*	89	82	0.01
QCA, DS ≥ 50%	87	83	-	84	73	-

IDI, integrated discrimination improvement

Borderline Coronary Stenosis: FFR 0.75

CT Perfusion Analysis: Quantitative

Diastolic phase with the least motion artifact

<u>Customized software</u>

- Classification of whole myocardium into 16 segments and into three myocardial layers
- Assignment of myocardial segments to vessel territories (LAD, LCX, RCA)

Evaluation parameters

- CT density on stress / rest CT (Density_{stress} / Density_{rest}, HU)
- Transmural perfusion ratio (TPR)
 - Density_{endocardial}/Density_{epicardial}
- Myocardial perfusion reserve index (MPRI),%
 - (Density_{stress} Density_{rest})/Density_{rest} * 100

Intermediate stenosis

Quantitative Analysis

Density map Syngo, Siemens

TPR map Home-made, AMC

Quantitative Analysis

Parameter	AUC	Cut off	Sensitivity	Specificity
All patients (n=75)				
TPR	0.759	0.98	75	71
Density _{stress} , HU	0.687	102.1	77	56
Density _{rest} , HU	0.559	113.9	65	51
MPRI, %	0.691	-4.0	67	62
Quantitative composite of TPR, Density _{stress} , or MPRI *	0.746	-	63	75
Combination of visual and quantitative composite **	0.878	-	89	73
Multivessel disease group (n=20)				
TPR	0.7209	0.97	71	67
Density _{stress}	0.6260	113.56	59	67
Density _{rest}	0.6423	109.19	51	67
MPRI, %	0.6243	5.0	73	56
Quantitative composite of TPR, Density _{stress} , or MPRI *	0.7433	-	68	78
Combination of visual and quantitative composite **	0.8266	-	81	89

TPR: transmural perfusion ratio MPRI: myocardial perfusion reserve index

Case: Assistance with Density Quantitation

Step 1

Visual Assessment Low density lesion conforming coronary territories in both systolic and diastolic phases

LCX (+)

Case: Assistance with Density Quantitation

Step 2

Density quantitation Positive quantitative parameters in <u>Two or more consecutive</u> myocardial segments

LAD (-) visual assessment

LCX (+)

TPR map

Case: Assistance with Density Quantitation

Angiography & FFR

LCX (+)

Quantitative Analysis of CTP: Potential Role

- Improvement of diagnostic accuracy
 - Intermediate lesion
 - Multi-vessel disease (balanced ischemia)
- Quantification of ischemic burden
- Vascular territory assignment

Coronary artery based myocardial segmentation (CAMS) method

CAMS – Animal Validation

Chung MS, Yang DH, Kim YH, 2015 in submission

CAMS – Animal Validation

Chung MS, Yang DH, Kim YH, 2015 in submission

CAMS vs. Specimen

Chung MS, Yang DH, Kim YH, 2015 in submission

Case: LAD Territory Ischemia

Tight stenosis in proximal LAD

 Reversible perfusion defect in LAD territory, larger than conventional myocardial segmentation than apical area

Ischemic Area: 42% of LV myocardium

ASAN Medical Center

Anterior wall Ischemia

Ischemic Area: 8% of LV myocardium

Cardiac CT: One Stop Shop

Imaging Target	Conventional Technique	Limitation of CT
1. Coronary artery stenosis	CAG	
2. Plaque evaluation	IVUS, OCT	Tanan and march time
3. Ventricular function	ECHO, MRI	Imporal resolutionSpatial resolution
4. Myocardial ischemia (CT perfusion)	SPECT, MRI	Radiation exposureUse of contrast material
5. Fractional flow reserve (CT-FFR)	Invasive FFR	 Blooming artifact from calcified plaque
6. Valve, Structural abnormality	ECHO, MRI	

KSCMR & CMR SEOUL 2 0 1 5

May 16 (Sat) – 17 (Sun), 2015 Asan Medical Center, Seoul, Korea