

The Anatomy And Clinical Trial Results Of Bicuspid Valve

Gerald Yong MBBS (Hons) FRACP FSCAI Interventional Head, High Risk Aortic Stenosis Program WA Director of Structural Intervention – Fiona Stanley Hospital Interventional Cardiologist – Fiona Stanley Hospital & Royal Perth Hospital

TCTAP 26 April 2016

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial Interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:

Consulting Fees/Honoraria:

Major Stock Shareholder/Equity Interest:

Royalty Income:

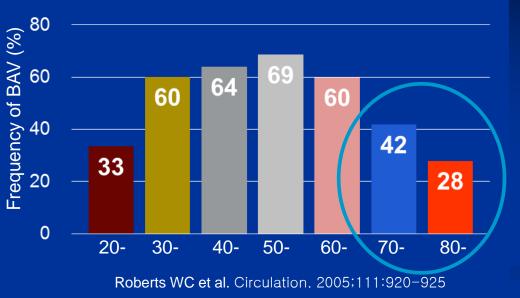
Ownership/Founder:

Salary:

Intellectual Property Rights:

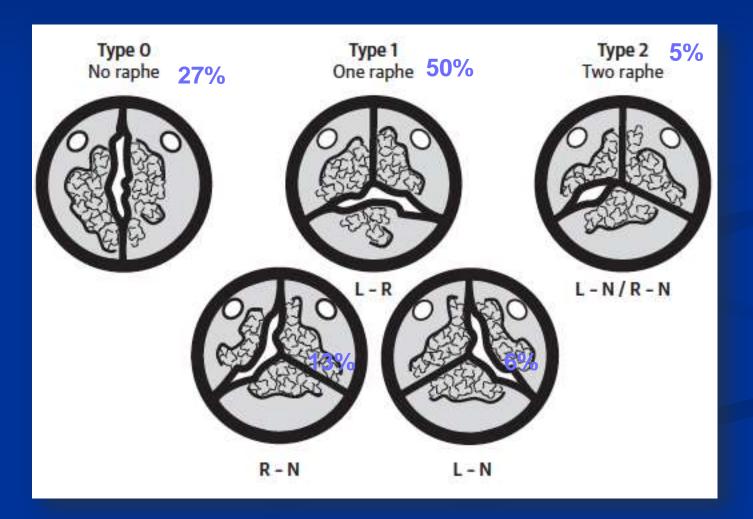
Other Financial Benefit:

Company


Edwards Lifesciences Medtronic St Jude

ANATOMY OF BICUSPID AORTIC VALVE

Bicuspid Valve - Anatomy


Bicuspid aortic valve Fedak P W et al. Circulation. 2002;106:900-904 **Frequencies of Bicuspid Aortic Valve**

- The most common congenital cardiac malformation (1-2%)
- Serious complications occurred > 30%
 <u>Aortic Stenosis</u> (the most common)
 Aortic Regurgitation
 Aortic dilation and dissection

Courtery – Dr Yoon

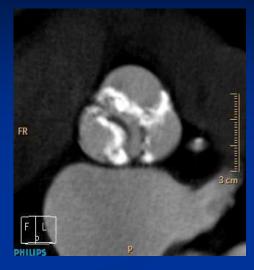
Siever's Classification

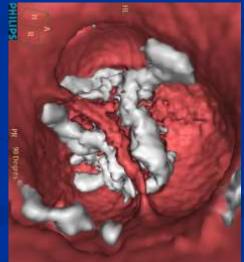
Characteristics	Tricuspid aortic valve N=200	Bicuspid aortic valve N = 200	P
Annulus			
Area (mm ²)	463 (106)	521 (102)	< 0.00 1
Diameter max	27 (3.4)	28.3 (3.6)	< 0.001
Diameter min	21 (2.9)	23 (3.2)	< 0.001
Δ Diameter	5.3 (2.8)	4.1 (5.4)	0.22
Ellipticity index	1.29 (0.1)	1.24 (0.1)	0.002
Circularity	21 (4)	78 (39)	< 0.001
Eccentric calcification	64 (32)	136 (68)	< 0.001
Sinus		10.045/1854050 10.045/1854050	
Perimeter	106 (15)	116(18)	< 0.001
Diameter, left coronary cusp	30.8 (3.0)	20,000	
Diameter, right coronary cusp	28.6 (3.3)		
Diameter, non-coronary cusp	31.2 (3.3)		
Height, left coronary cusp	22 (3.6)	22 (5)	0.8
Height, right coronary cusp	23 (3.3)	22 (5)	0.8
Height, non-coronary cusp	21.3 (3.1)	24 (6)	< 0.006
Sino-tubular Junction			
Perimeter	85.5 (12.3)	99.5 (20.3)	< 0.001
Diameter	27.2 (3.9)	31.9(5.7)	< 0.001
Coronary ostia		201206/001342-0016 	
Height, left coronary artery	14.1 ± 3.2	14.9 ± 5.7	0.14
Height, right coronary artery	16.4 ± 4.5	16.3 ± 5.3	0.14
Long axis diameter (mm)	26.9 ± 7	27.4 ± 5	0.76
Ascending aorta			
Area (mm ²)	688 (133)	740 (132)	< 0.001
Diameter	29.8 (3.6)	36.9 (8)	< 0.001

TABLE II. Anatomic Dimensions of the Aortic Root

CT imaging of 200 tricuspid and 200 bicuspid AS pre-AVR

Bisucpid valve assoc with
Larger

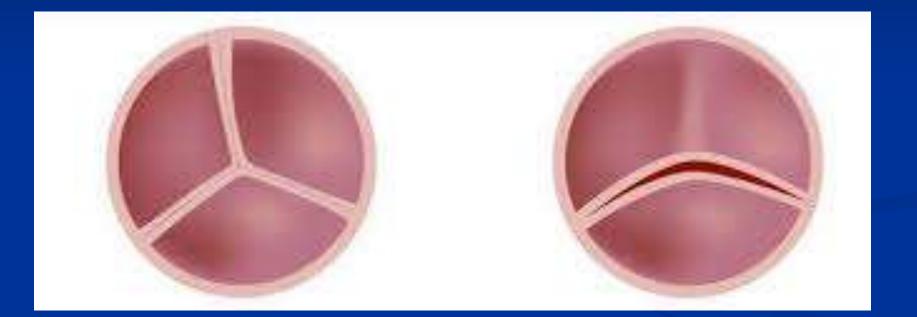

Annulus
Sinus of valsalva
STJ
Ascending aorta


More eccentric calcification

Philip - Catheter Cardiovasc Interv. 2015;86:E88-98

Bicuspid Aortic Valve disease and TAVR

- Bicuspidy is regarded as a relative CI to TAVR due to the risk of uneven expansion of the bioprosthesis.
- ✓ Not indicated in the IFU of approved devices
- ✓ Exclusion criteria in clinical trials
- ✓ Thus, the safety and efficacy of TAVI for this anatomic variation still remains unclear.


OUTCOMES OF TAVR IN BICUSPID AORTIC STENOSIS

Baseline Characteristics

	Hayashida (N = 21)	Bauer (N=38)	Kochman (N=28)	Costopouls (N=21)	Mylotte (N=143)	Yoon (N=199)
Age	82	81	78	77	78	77
Male	57%	42%	46%	57%	56%	65%
L. EuroSCORE	19.9	18	19	24	14.8	15.0%
Type of device						
CoreValve	48%	68%	82%	62%	65%	56%
SAPIEN	52%	32%	18%	38%	35%	44%
Device success	100%	100%	93%	86%	90%	73%
$AR \ge Grade 2$	19%	-	32%	24%	28%	17.6%
Stroke	0	0	0	0	2.1%	2.5%
30-day mortality	4.8%	11%	4%	14%	5.0%	4.5%
1-year mortality	-	13%	18%	32%	18%	

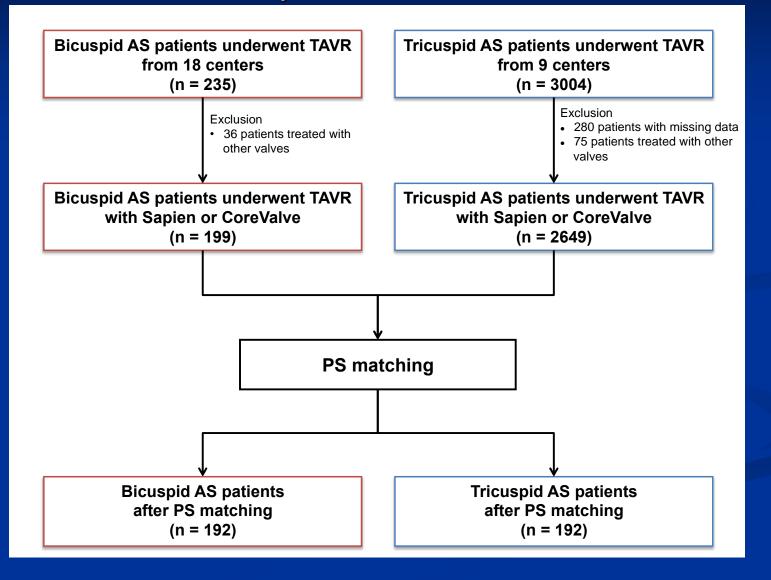
Hayashida. Circulation CI. 2013; 6:284-291 Bauer. Am J Cardiol. 2014; 113:518-21 Costopoulos. Am J Cardiol. 2014 ;113:1390-1393 Kochman. Am J Cardiol. 2014;114:757-62 Mylotte. J Am Coll Cardiol. 2014; 64: 2330-39 Yoon. – J Am Coll Cardiol (in-press)

How does the outcome compare between bicuspid and tricuspid aortic valve?

Bicuspid TAVR Registry

NCT 02394184

Total (n=301)	Early-generation devices (n=199)		New-generation devices (n=102)	
	SAPIEN XT	CoreValve	SAPIEN 3	Lotus
	(n=87)	(n=112)	(n=91)	(n=11)


20 centers from 14 countries in Europe, North America and Asia-Pacific

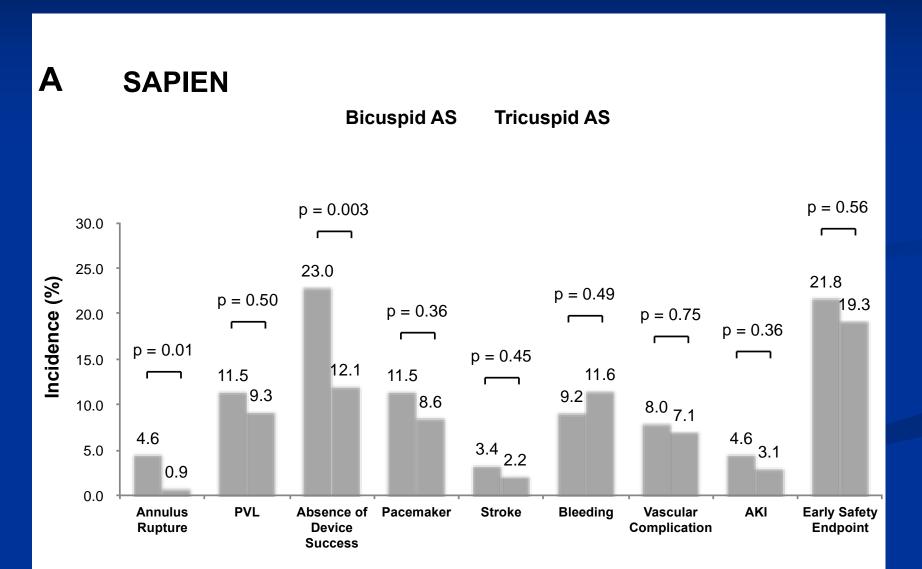
Yoon. – J Am Coll Cardiol (in-press)

BICUSPID TAVR REGISTRY

Comparison of Outcomes with Tricuspid AS

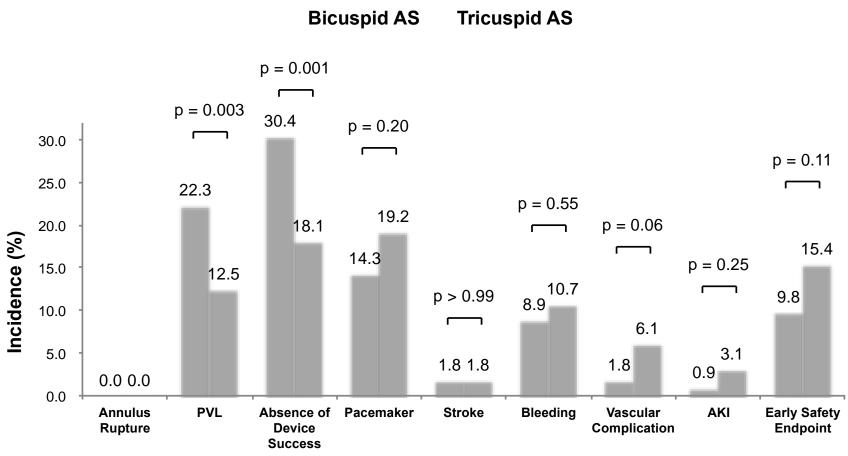
Early Generation Devices

Baseline Characteristics

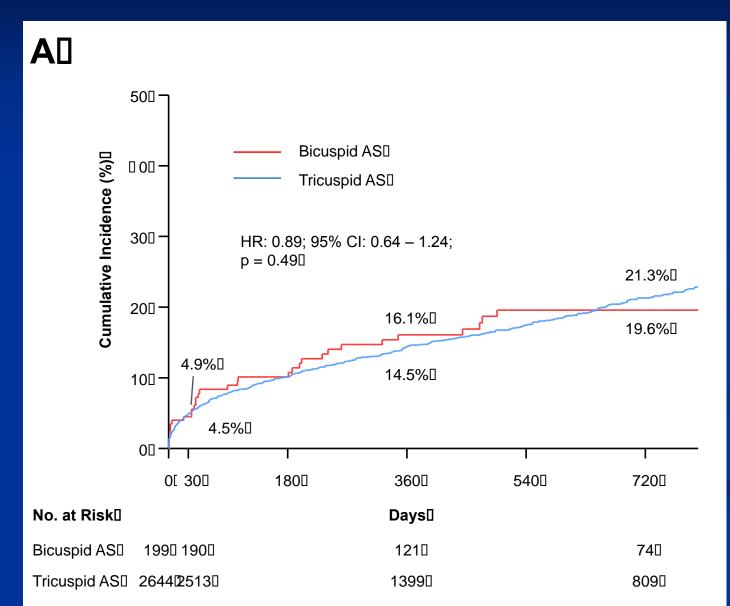

	Bisucpid Aortic Stenosis (n=192)	Trisucpid Aortic Stenosis (n=192)
Age	77.7	78.4
	36%	42%
Logistic EuroSCORE	15.3	15.6
	4.7	4.4
Previous stroke	14.1%	18.1%
	11.5%	7.8%
LVEF, %	53.4%	51.6%

Procedural Data

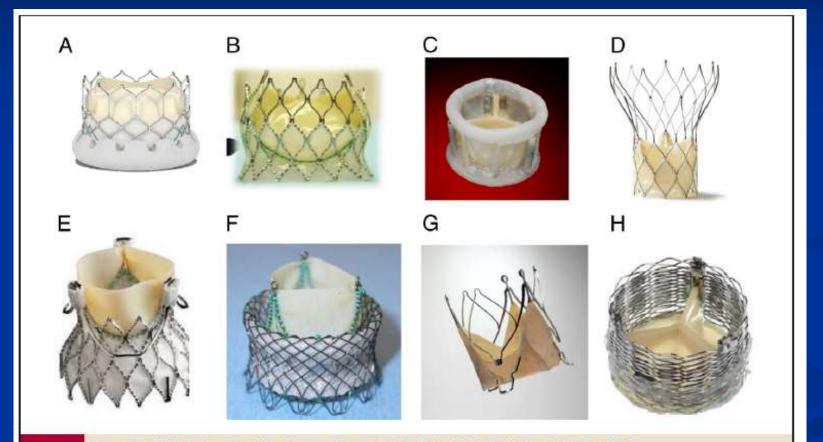
	Bisucpid Aortic Stenosis (n=192)	Trisucpid Aortic Stenosis (n=192)
Transfemoral access	78.6%	76.6%
Device type		
Sapien XT		42.8%
CoreValve		56.8%
Type of bicuspid		
Type 0	13.4%	
Type 1	84.1%	
Type 2	2.5%	


Outcomes – SAPIEN / XT valve

Higher risk of annular rupture



Outcomes – CoreValve Higher Risk of significant PVL


B CoreValve

Similar short and medium term survival

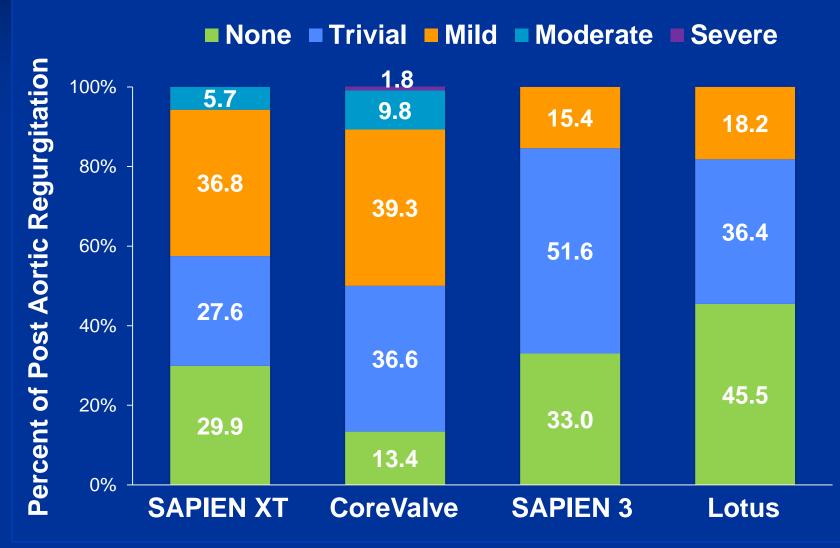
How does the newer transcatheter valve perform?

Figure 5 Emerging TAVR Devices Involving Improved Technologies, Potentially Minimizing PVL After TAVR

(A) SAPIEN 3 (Edwards Lifesciences, Irvine, California). (B) CENTERA (Edwards Lifesciences). (C) Direct Flow Medical (Direct Flow Medical, Santa Rosa, California).
 (D) Portico (St. Jude Medical, St. Paul, Minnesota). (E) Engager (Medtronic, Minneapolis, Minnesota). (F) Heart Leaflet Technologies (Heart Leaflet Technologies, Maple Grove, Minnesota). (G) JenaValve (JenaValve Technology, Munich, Germany). (H) Sadra Lotus Medical (Boston Scientific SciMed Inc., Maple Grove, Minnesota).

Bicuspid TAVR Registry

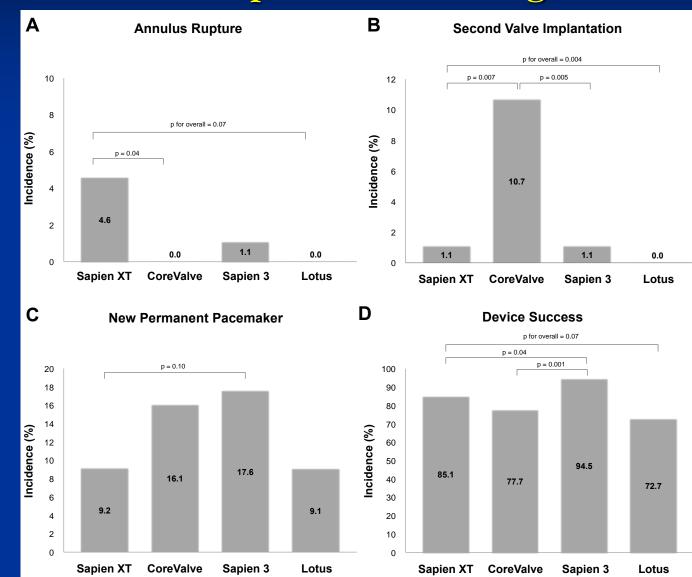
Early-generation devices		New-generation devices		
(n=199)		(n=102)		
SAPIEN XT	CoreValve	SAPIEN 3	Lotus	
(n=87)	(n=112)	(n=91)	(n=11)	


Baseline Characteristics

	Overall (N = 301)	Old devices (N = 199)	New devices (N = 102)	p value
	57.5%	64.8%	43.1%	
	74.1%	74.4%	73.5%	
	16.3%	15.7%	18.6%	
	12.6%	11.1%	15.7%	
	17.3%	18.1%	15.7%	
LVEF, %	51 ± 15	53 ± 15	48 ± 16	0.004

Procedural Data

	Overall (N = 301)	Old devices (N = 199)	New devices (N = 102)	p value
Transfemoral access				
Device type				
Sapien XT				
CoreValve				
Sapien 3				
Lotus	-	-	11 (10.8)	
Type of bicuspid				
Type 0	11.9%	13.0%	10.1%	
Type 1	86.2%	84.5%	88.9%	
Type 2	1.9%	2.5%	1.0%	


Paravauvular Regurgitation Lower ≥moderate PVL with newer devices

J Am Coll Cardiol. 2016. In Press

Safety Outcomes

Lower annulus rupture with newer generation devices

Bicuspid Aortic Valve Stenosis

Favorable Early Outcomes With a Next-Generation Transcatheter Heart Valve in a Multicenter Study

TABLE 4 30-Day Clinical Events (N - 51)*

2 (3.9)
0 (0)
1 (1.9)
0 (0)
1 (1.9)
14 (27.5)
2 (3.9)
3 (5.9)
9 (17.6)
7 (13.7)
2 (3.9)
5 (9.8)
1 (1.9)
12 (23.5)
6 (11.7)

Values are n (%). *All clinical events were defined according to VARC-2 criteria. †The rate of patients requiring a new pacemaker, excluding 4 patients who had a pacemaker before transcatheter acrtic valve replacement, was 25.5%.

Multicenter registry of SAPIEN 3 Valve in 51 patients with bicuspid aortic stenosis

30-day mortality – 3.9% 30-day stroke – 1.9% Pacemaker – 23.5%

Annulus Rupture – 0 ≥ Moderate AR - 0

Perlman, G. Y., JACC Cardiovasc Interv. 2016;9:817-24

Case 1 – Bicuspid valve; Horizontal Aorta

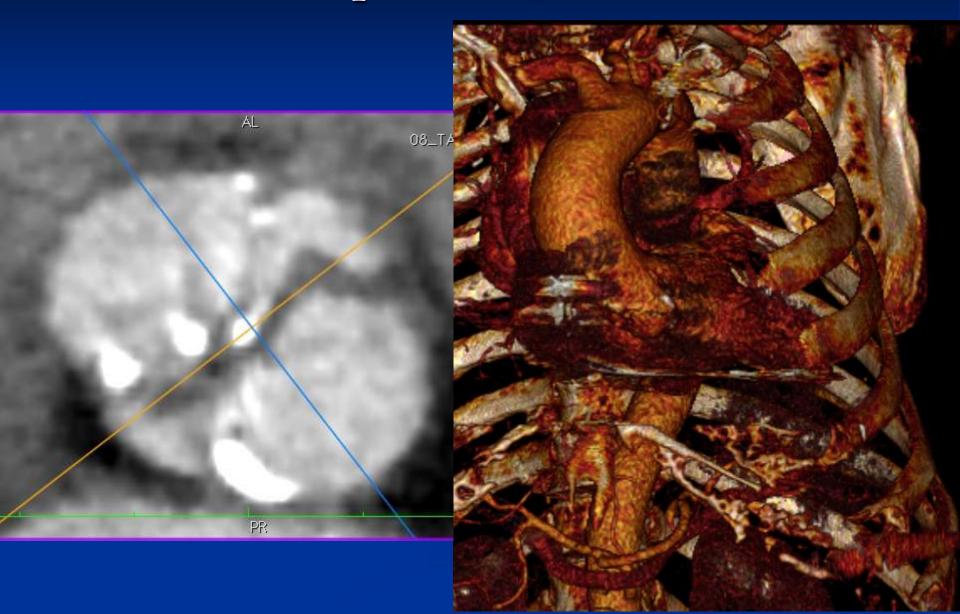
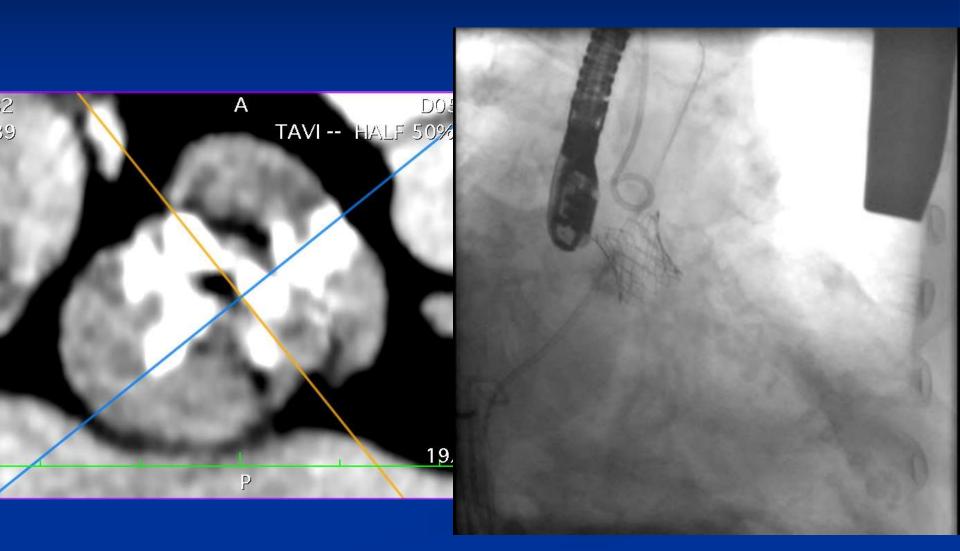



Image size: 512 x 512 View size: 1236 x 1236 WL: 91 WW: 118 Shand Ian B7272717(-, -) Aorta HDR (60s) -- Aorta HDR (60s) TAV

Zoom: 241% 0 -27.9 Im: 1/112 JPEGLossless:Non-hierarchical-1stOrderPrediction Position: HFS

25/03/2015 4:07:15 pm Made In OsiriX

Case 2 – Severe calcified bicuspid aortic stenosis; Small annulus

Conclusion

- Bicuspid aortic valve poses challenges to TAVR
 Sizing, positioning, calcification
- Clinical outcomes challenging compared to tricuspid aortic valve
 - Annulus rupture risk with balloon expandable valve
 - Paravalvular regurigtation with self-expanding valve
- Newer generation TAVR values offer significant improvement and trend to abolishment of risks