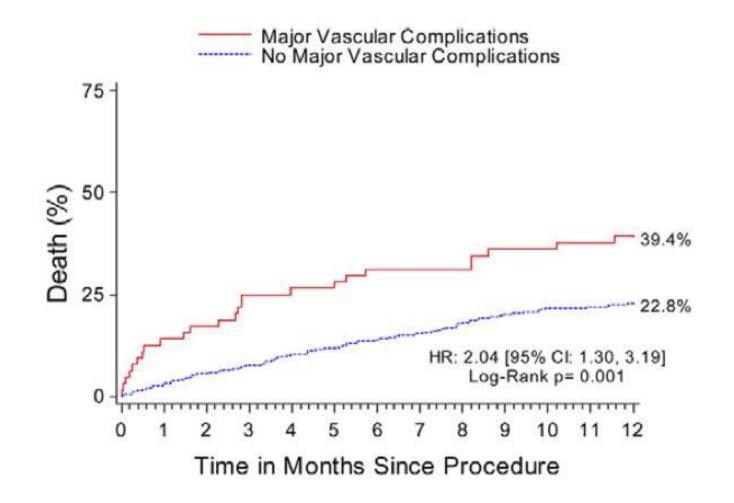
MDCT for Transcatheter Valve Procedures

Jonathon Leipsic MD FRCPC FSCCT Vice Chairman of Radiology Associate Professor Radiology and Cardiology University of British Columbia Canada Research Chair -Advanced Cardiac Imaging President Elect Society of Cardiovascular CT

Disclosures

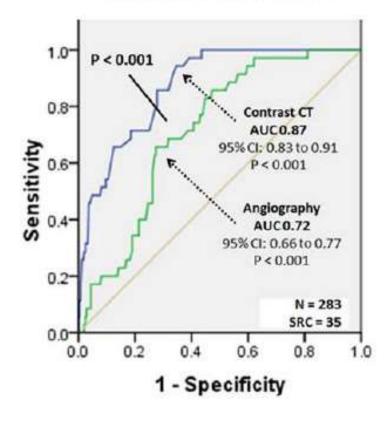
Speaker's bureau: GE Healthcare and Edwards LifeSciences


Grant Support- CIHR, NIH, GE Healthcare, Heartflow

Advisory Board- GE Healthcare, Edwards LifeSciences, Vital Images, Neovasc, Circle CVI

Core Lab- NIH, Edwards Lifesciences, Neovasc, Tendyne

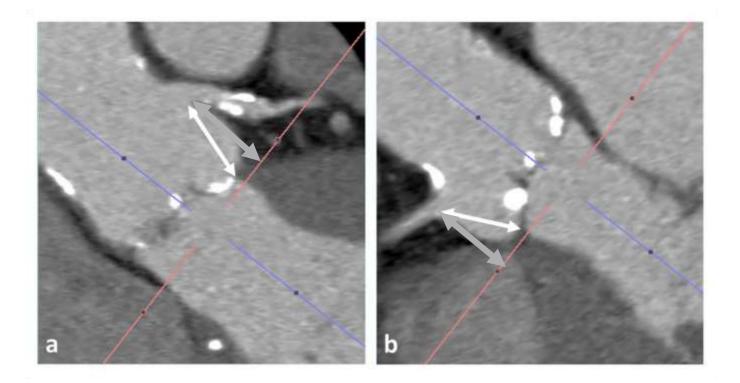
Vascular Injury


Major Vascular Complications and Mortality

Genereux, J Am Coll Card 2012; 60(12): 1043-52.

Contemporary Re-appraisal of SFAR

Contrast-CT cohort



Contrast CT (P<0.001)						
	SRC	No SRC	Total			
SIFAR≥1.12	33 (27.7%)	86 (72.3%)	119			
SIFAR<1.12	2 (1.2%)	162 (98.8%)	164			

Source: Okuyama et al Circ Imaging 2014

Ancillary root measurements & Coronary height

Coronary artery height

IFU - SAPIEN® - Minimum 10/11 mm

CAVE : Measurements not standardized, "bulky calcifications"

Anatomical Predictors of Coronary occlusion

Multi-center register

Joseph of the Assessing Underson of Cardinings 42 2013 by the Assessing Underson Underson Published by Elsevier Inc. Vol. 62, No. 17, 2003 E86N 0758-10977E86.00 Mit.doi.org/10.1016/j.jpc.2013.07.000

CUNICAL RESEARCH

Interventional Cardiology

Predictive Factors, Management, and Clinical Outcomes of Coronary Obstruction Following Transcatheter Aortic Valve Implantation

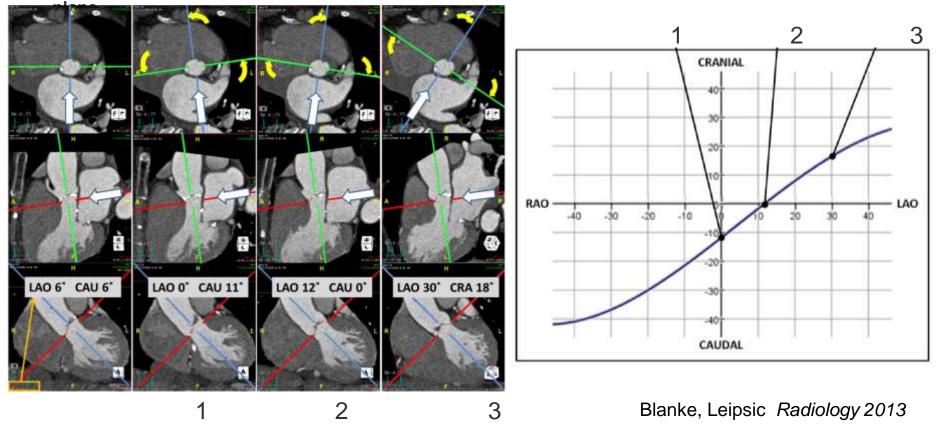
Insights From a Large Multicenter Registry

Henrique B. Ribeiro, MD,* John G. Wetlo, MD,† Raj R. Makkar, MD,‡ Mawricio G. Cohen, MD,§ Samir R. Kapada, MD,§ Susheel Kodali, MD,† Corrado Tamburion, MD,# Marco Barbanti, MD,§ Tamo Chalezvarty, MD,‡ Hasan Jilaihawi, MD,§ Corrado Tamburion, MD,# Marco Barbanti, MD,§ Fabio S. de Brito, Ja, MD,** Sergio J. Cánovan, MD,†† Aaim N. Cheema, MD,§ Perer P. de Jaegere, MD,§§ Raqud del Valle, MD,§] Paul T. L. Chiam, MD,§§ Rasil Moreno, MD,## Gonzalo Pralas, MD,*** Marc Road, MD,†† Jonge Salgsdo-Fernindez, MD,§§ Rasil Moreno, MD,#** Rogerio Sarmento-Leite, MD,§§§ Hadi D. Toeg, MD,††† James L. Velianou, MD,§§ Alan Zajariae, MD,§§§ Vasilis Babaliaros, MD,### Fernando Cura, MD,*** Antonio E. Dager, MD,†††† Ganesh Manobaran, MD,‡‡‡‡ Stamation Lezikin, MD,### Angono D. Pichard, MD,§§§ Sam Radhukrabman, MD,‡‡‡‡ Stamation Lezikin, MD,### Anguno D. Pichard, MD,§§§ Sam Radhukrabman, MD,‡‡‡‡ Marco Antonio Perin, MD,** Eric Dumont, MD,* Eric Larose, MD,§ Sergis G. Pasiae, MD,* Luis Nombela-Franco, MD,* Marina Urena, MD,* E. Munat Tuncu, MD,§ Marini B. Leon, MD,§ Laus Nombela-Franco, MD,\$ Jonathon Leipsic, MD,† Josep Rodés-Cabau, MD*

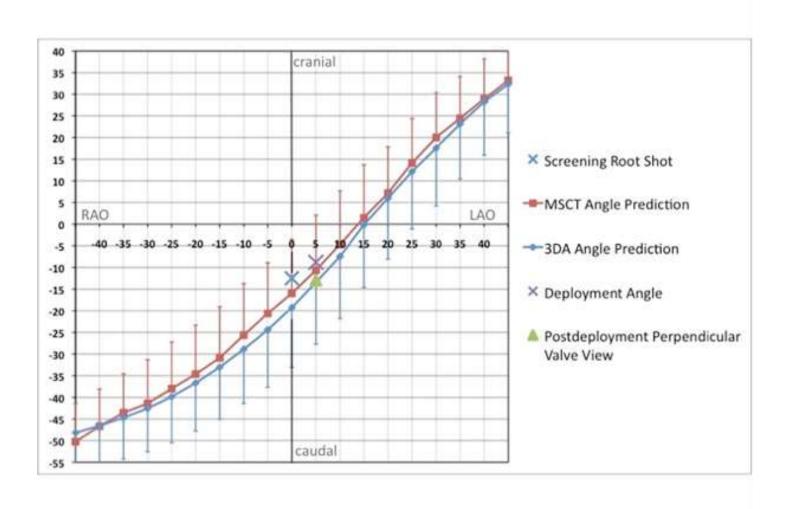
Quebec City, Quebec, Toronto, Ottavuo, Hamilton, Ontario, and Pancaetser, British Calambia, Canada: Los Angeles, California, Miami, Florida; Cleveland, Ohis, New York, New York, Catania, Italy: Sao Paulo, and Porto Alegre, Brazil; Valmcia, Orsiedo, Madrid, Vigo, La Coruna, and Valladolid, Spain; Rattenham, the Netherlands; Singapore; St. Lusis, Minesuri; Atlanta, Georgia; Busnos Airo, Argentina; Cali, Colombia; Belfast, Northern Irsland; and Washington, DC

- 44/6688 (0.66%)
- Predominantly LM
- More common in
 - Women
 - Balloon-expandable TAVI
 - Valve-in-Valve

Centre for Heart Valve Innovation = St. Paul's Hospital, Vancouver

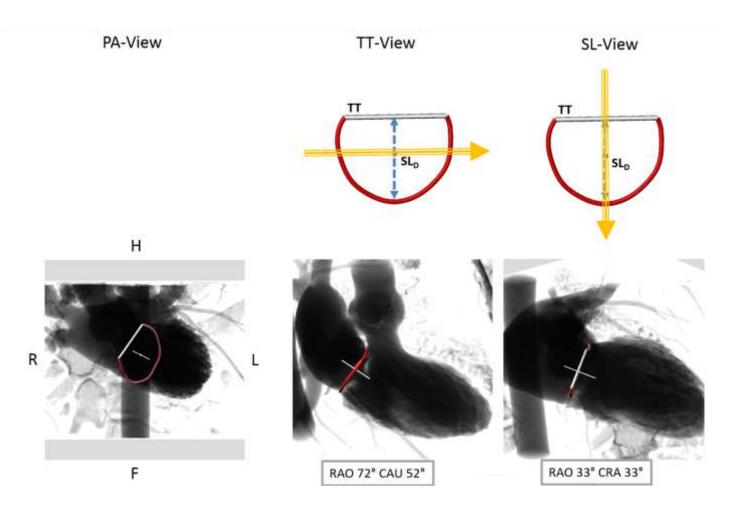

- LMH:
 - 10.6±2.1mm vs. 13.4±2.1mm
 - <12mm in obstruction 86%
 - <12mm controls 26%
- SOV:
 - 28.1±3.8mm vs. 31.9±4.1 mm
 - <30mm in obstruction 71%
 - <30mm controls 33%
- LMH <12mm and SOV <30mm
 - obstruction 68%
 - controls 13%

Fluoroscopy angulation prediction

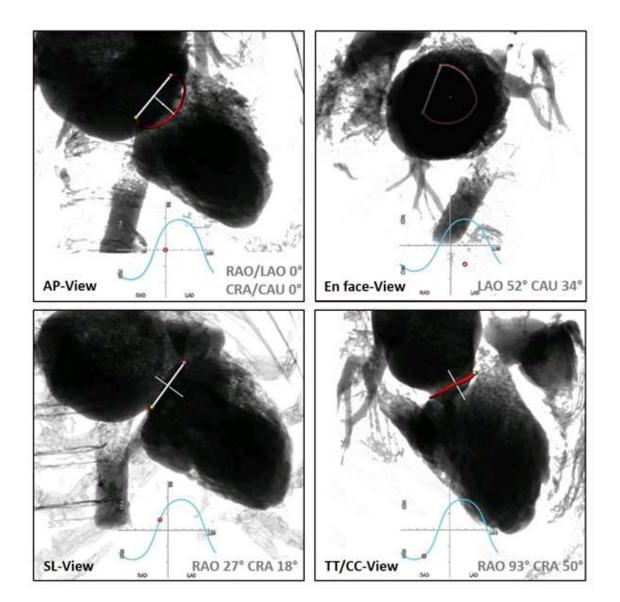

Line of perpendicularity

IdentificatioAdjusting toAdjusting toAdjusting tonLAO 0°CAU 0°LAO 30°of annulus

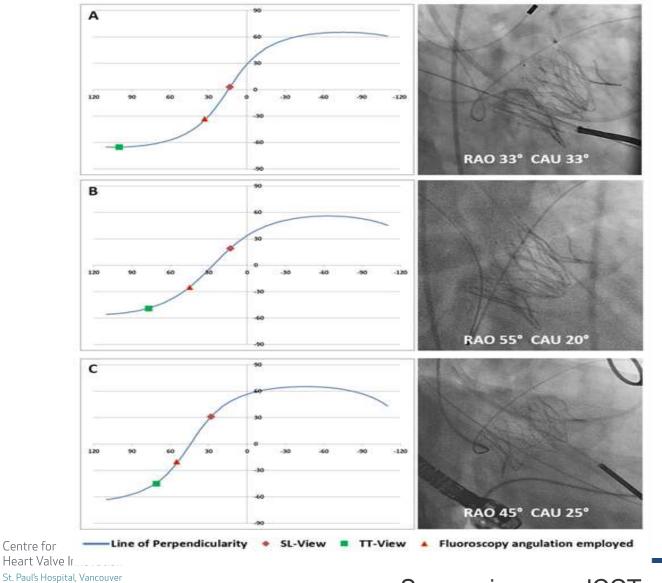
MDCT vs 3-D Angio CT for Angle Prediction



Source: Binder et al. TCT 2011, Circ Interventions April 2012

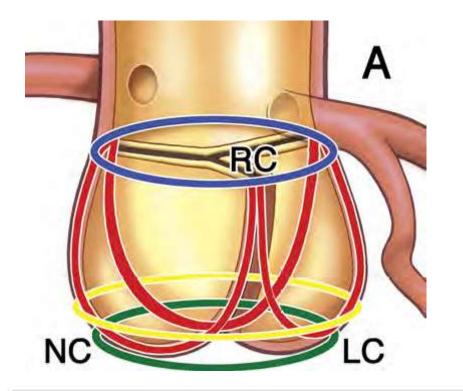

Assist with co-planar angle prediction

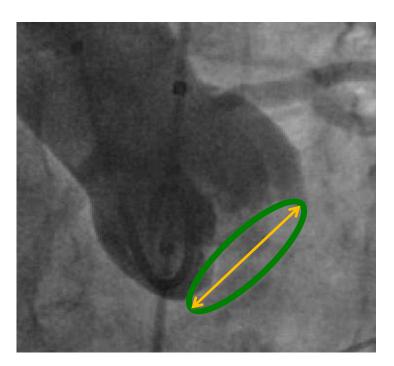
Prediction of fluoroscopy angulation


• Corresponding LAO/RAO and CRA/CAU

Only some angles are feasible in the hybrid OR

Clinical Implications for TMVI

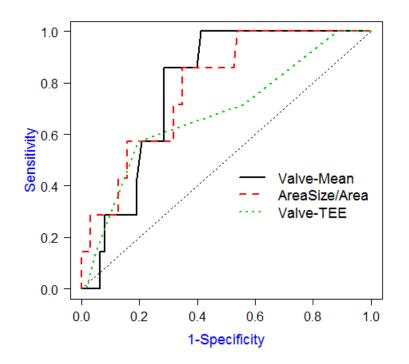




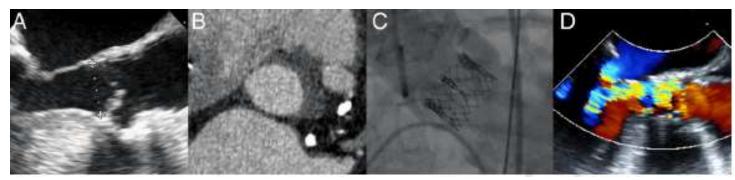
Source: in press JCCT

MDCT for Annular Sizing and THV Selection

The Virtual Basal Ring

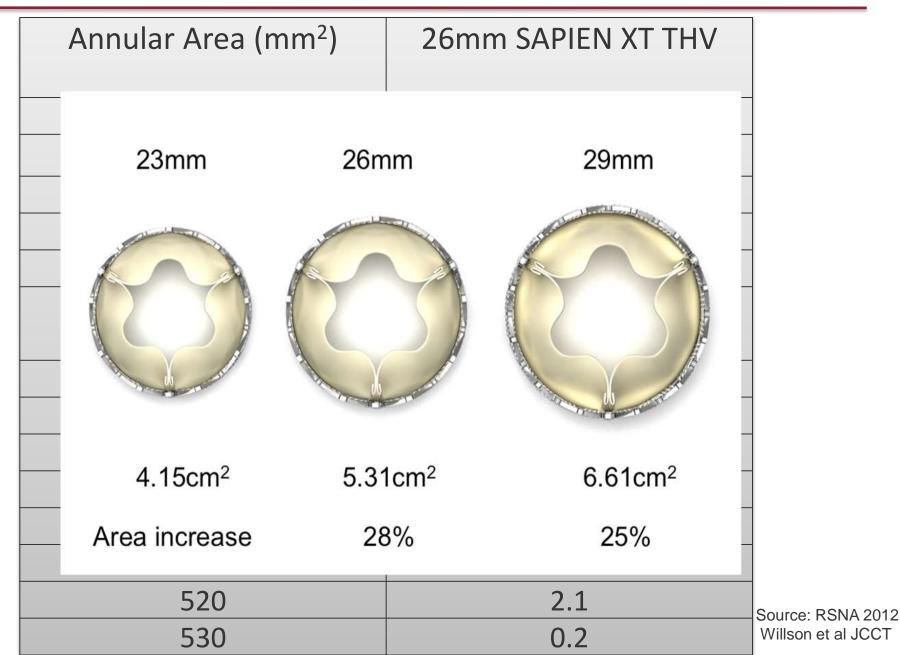


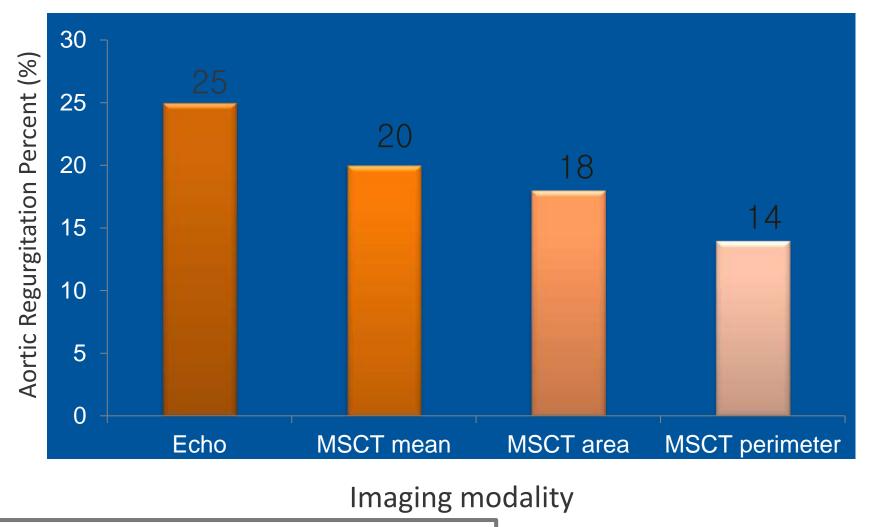
Sinotubular junction **Aortic Annular Diameter Aortic leaflets Aortic Annulus** RC = Right coronary cusp; NC = Non-coronary cusp; LC = Left coronary cusp


Source: Leipsic et al JACC Img April 2011

Area Measurements Can Predict Significant PV Leak

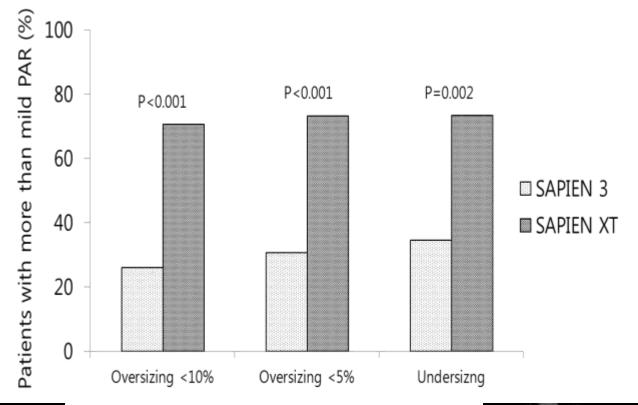
CT Annular Measures Can Predict PV Leak


- Valve stent diameter Mean annular diameter_{MDCT} AUC 0.84
- Valve stent diameter Area-derived annular diameter_{MDCT} AUC 0.86
- Valve stent area/ Annular area_{MDCT} AUC 0.87

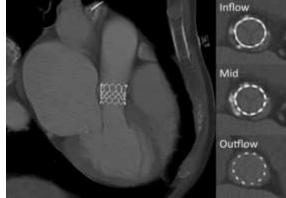

Willson et al. JACC 2012

MDCT Can Provide Reproducible and Robust Sizing Recommendations

Vancouver MDCT Sizing Guidelines


Comparison of MSCT Annulus Measurements

Retrospective analysis suggests that perimeter would have the lowest % of patients with $AR \ge 2$


Source: Slide courtesy of Dr N Piazza

Different Sizing Algorithms for Different Valves

Degree of minimal area oversizing

Different Sizing Algorithms for Different Valves

SAPIEN 3

It may not always be possible to implant the larger THV size for borderline annulus diameters. Consider the smaller THV in the following special situations:

- Severe annulus calcification
- Narrow root and low coronary ostia
- Narrow sinotubular junction
- Mitral annular calcification
- Porcelain aorta
- Bulky leaflet and low coronary ostia

If/when outside of recommended range:

1) Reference alternative sizing modalities (echocardiography, balloon sizing)

2) Consider the following factors in valve size selection

 Clinical: very advanced age, corticosteroids, chest radiation, extensive calcification, calcium extending into the LVOT, etc

3D Area-derived Dia	meter (mm)	20.0	20.2	20.5	20.7	21.0	21.1	21.4	21.7	22.0	22.3	22.6	22.8	23.0	23.1	23.4	23.7	23.9	24.0	24.2	24.5
3D Annular Area (m	m²)	314	320	330	338	346	350	360	370	380	390	400	410	415	420	430	440	450	452	460	470
% Annular Area Over (+) or Under (-)	23 mm	29.3	26.9	23.0	20.1	17.3	16.0	12.8	9.7	6.8	4.1	.5	-1.0	-2.2	-3.3	-5.6	-7,7	-9.8			
	26 mm											3.8	26.6	25.1	23.6	20.7	18.0	15.3	14.8	12.8	10.4
Nominal by 3D CT	29 mm										1		1	-	1	i i					

Bold = recommended Sealing Zones relate only to valves that are deployed with nominal volumes

ALL VALUES PRESENTED ARE BASED ON NOMINAL/RECOMMENDED INFLATION VOLUMES.

SYSTOLIC MEASURES ARE RECOMMENDED

24.5	24.7	25.0	25.2	25.5	25.7	26.0	26.2	26.4	26.5	26.7	26.9	27.2	27.4	27.6	27.9	28.0	28.1	28.3	28.5	28.8	29.0	29.2	29.4	29.5	29.6	29.9	30.1	30.3
470	480	490	500	510	520	530	540	546	550	560	570	580	590	600	610	615	620	630	640	650	660	670	680	683	690	700	710	720
10.4	8.1	5.9	3.8	1.8	-0.2	-2.1	-3.9	-4.9	-5.6	-7.3	-8.9																	
			29.8	27.3	24.8	22.5	20.2	18.9	18.0	15.9	13.9	11.9	10.0	8.2	6.4	5.5	4.7	3.0	1.4	-0.2	-1.7	-3.1	-4.6	-5.0	-5.9	-7.3	-8.6	-9.9

From Theoretical to Practical

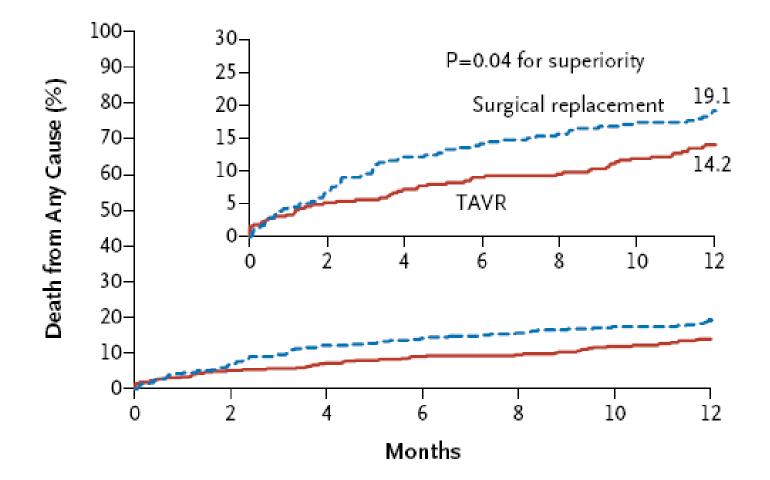
Cross-Sectional Computed Tomographic Assessment Improves Accuracy of Aortic Annular Sizing for Transcatheter Aortic Valve Replacement and Reduces the Incidence of Paravalvular Aortic Regurgitation

Hasan Jilaihawi, BSC (HONS), MBCHB,* Mohammad Kashif, MD,* Gregory Fontana, MD,† Azusa Furugen, MD, PHD,* Takahiro Shiota, MD,* Gerald Friede, BS, MS,* Rakhee Makhija, MD,* Niraj Doctor, MBBS,* Martin B. Leon, MD,‡ Raj R. Makkar, MD*

Table 5	Comparison of Outcomes	Related to Prosthesis	Sizing With TEE- and CT-Guided Approaches
---------	------------------------	------------------------------	---

Outcomes	All Studied Patients (n = 136)	2D TEE-Guided Annular Sizing (n = 96)	Cross-Sectional CT-Guided Annular Sizing (n = 40)	p Value
PV AR				0.001
None	41 (30.1)	23 (24)	18 (45)	
Trivial or mild	71 (52.2)	52 (54.1)	19 (47.5)	
Mild-moderate	9 (6.6)	8 (8.3)	1 (2.5)	
Moderate	12 (8.8)	10 (10.4)	2 (5)	
Moderate-severe	3 (2.2)	3 (3.1)	0	
Severe		0	0	
PV AR > mild	24 (17.6)	21 (21.9)	3 (7.5)	0.045
Need for bail-out valve-in-valve	1 (0.7)	1 (1)	0	0.52
Annular rupture	1 (0.7)	1(1)	0	0.52
Prosthesis instability (rocking)	1 (0.7)	1(1)	0	0.52
Peri-procedural mortality	4 (3)	3 (3.2)	1 (2.5)	0.82

Impact of CT sizing on TAVR outcomes


The Impact of Integration of a Multidetector Computed Tomography Annulus Area Sizing Algorithm on Outcomes of Transcatheter Aortic Valve Replacement: A Prospective, Multicenter, Controlled Trial

Short Title: Computed Tomography Area Sizing for TAVR

Ronald K. Binder¹, MD; John G. Webb¹, MD; Alexander B. Willson¹, MBBS; Marina Urena², MD; Nicolaj C. Hansson³, MD; Bjarne L. Norgaard³, MD; Philippe Pibarot², MD; Marco Barbanti¹, MD; Eric Larose², MD; Melanie Freeman¹, MBBS; Eric Dumont², MD; Chris Thompson¹, MD; Miriam Wheeler¹, MBChB; Robert R. Moss¹, MD; Tae-hyun Yang¹, MD; Sergio Pasian², MD; Cameron Hague¹, MD; Giang Nguyen¹, MD; Rekha Raju¹, MD; Stefan Toggweiler¹, MD; James K. Min, MD⁵; David A. Wood⁴, MD; Josep Rodés-Cabau², MD; Jonathon Leipsic¹, MD.

- □ 266 patients in the trial
- 133 patients underwent TAVR with the MDCT sizing algorithm recommendation and 133 patients without the algorithm
- PVL> mild was present in 5.3% in the MDCT group and in 12.8% in the control group (p=0.032)
- Composite of in-hospital death, aortic annulus rupture and PVL> moderate 3.8% in the MDCT group and in 11.3% in the control group (p=0.020)

CT Sizing helps optimize outcomes with Self Expanding Prosthesis

Source : Adams et al NEJM 2014

Preventing Annular Injury with MDCT

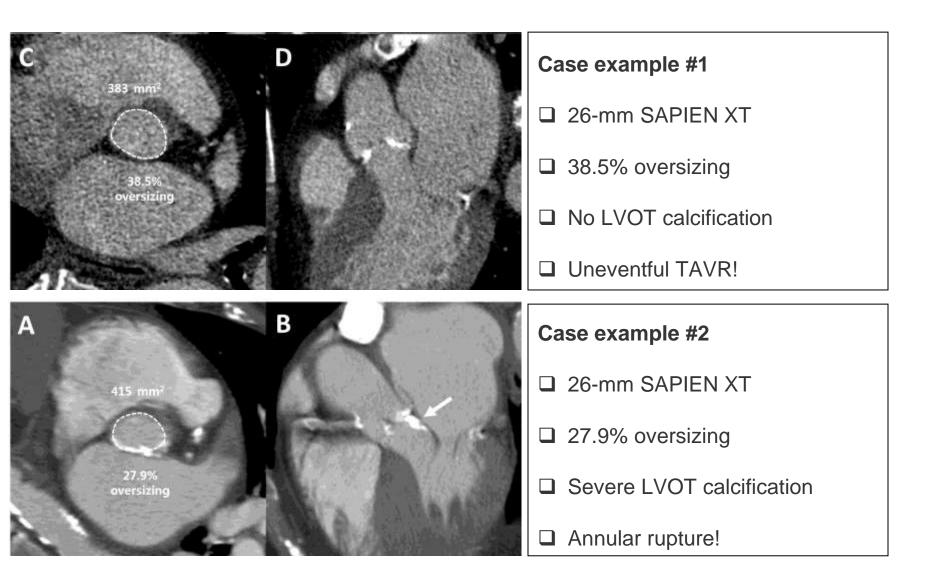
Annular rupture

Anatomical and Procedural Features Associated with Aortic Root Rupture During Balloon-Expandable Transcatheter Aortic Valve Replacement

Marco Barbanti, Tae-Hyun Yang, Josep Rodés-Cabau, Corrado Tamburino, David A. Wood, Hasan Jilaihawi, Philipp Blanke, Raj R. Makkar, Azeem Latib, Antonio Colombo, Giuseppe Tarantini, Rekha Raju, Ronald K. Binder, Giang Nguyen, Melanie Freeman, Henrique B. Ribeiro, Samir Kapadia, James Min, Gudrun Feuchtner, Ronen Gurtvich, Faisal Alqoofi, Marc Pelletier, Gian Paolo Ussia, Massimo Napodano, Fabio Sandoli de Brito, Jr., Susheel Kodali, Bjarne L. Norgaard, Nicolaj C. Hansson, Gregor Pache, Sergio J. Canovas, Hongbin Zhang, Martin B. Leon, John G. Webb and Jonathon Leipsic

	Study group	Uncontained rupture	Contained rupture	Dyrahua
	(n = 31)	(n = 20)	(n = 11)	P value
Mortality	48.4%	75.0%	0.0%	<0.001
Cardiovascular mortality	45.2%	70.0%	0.0%	<0.001
Disabling stroke	12.9%	10.0%	18.2%	0.447
Life-threatening bleeding	45.2%	60.0%	18.2%	0.049

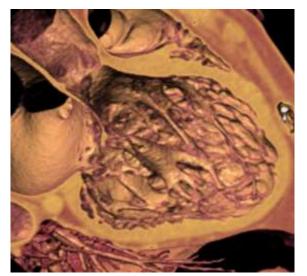
Annular Rupture May not Be Random-Insights from MDCT

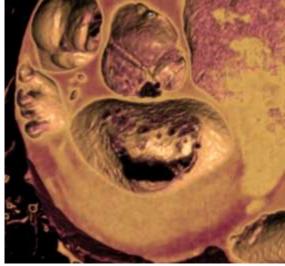

U	niva	riate

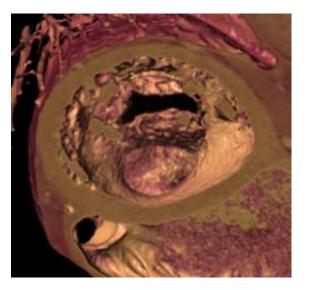
Predictors of aortic root rupture	Odds Ratio (95%CI)	P value
LVOT calcifications moderate/severe	10.92 (3.23-36.91)	<0.001
Prosthesis oversizing ≥ 20%	8.38 (2.67-26.33)	<0.001

Source: ACC 2013 and Circulation July 2013

Case examples

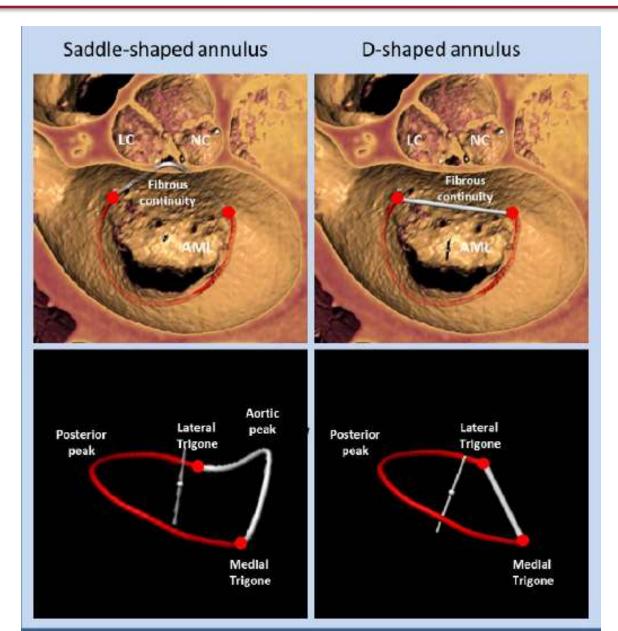

Significant oversizing (>20%) is possible...Just do it in the right patient!

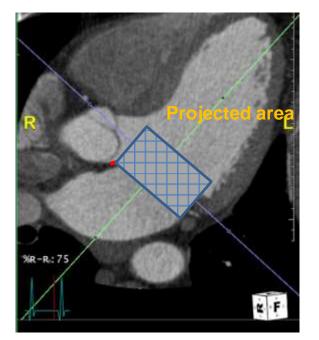


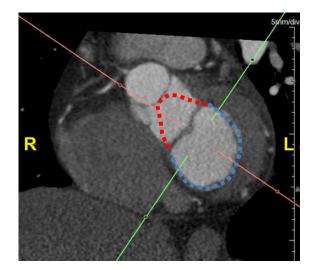

Transcatheter Mitral Valve Implantation (TMVI)

Requirements

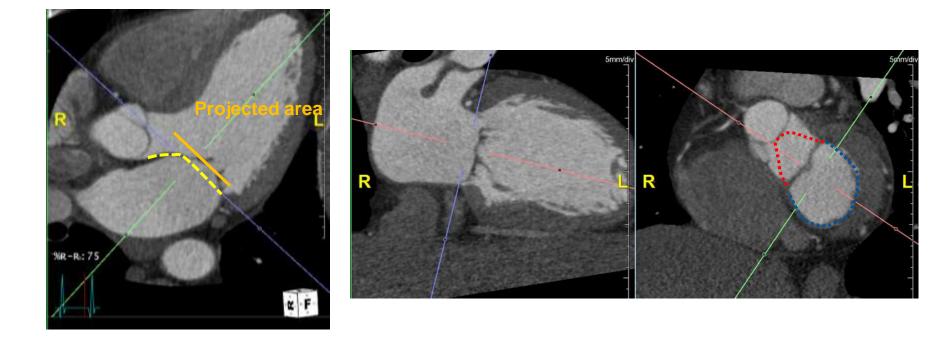
- **1**. Secure position preventing migration
 - 2. Minimize paravalvular leakage
 - 3. Avoid LVOT obstruction

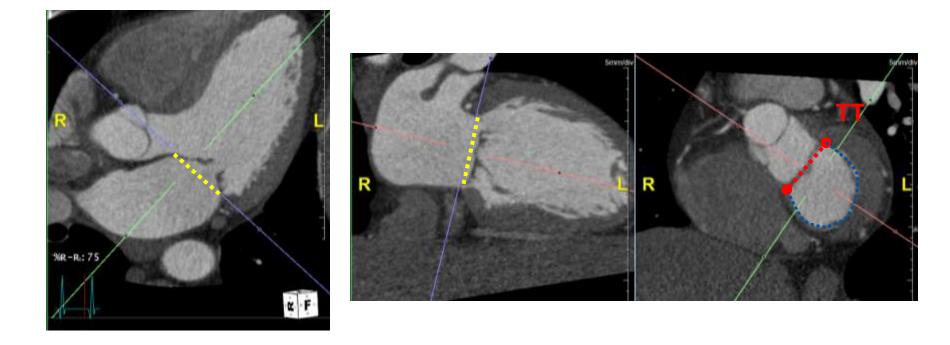




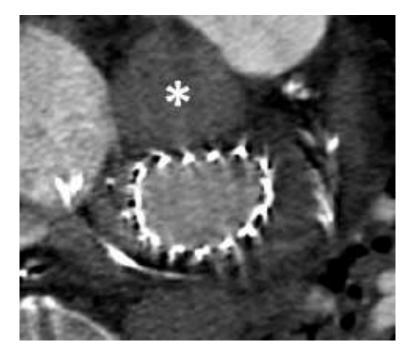


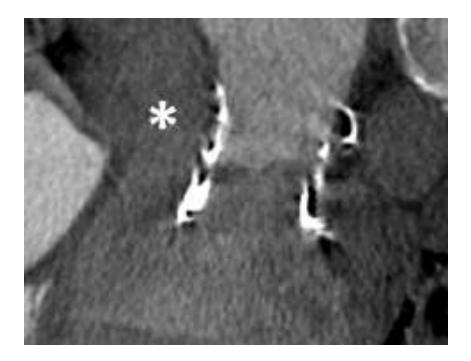
Re-thinking the Mitral Annulus


Mitral Annulus in the context of TMVI


Source: Blanke et al JCCT 2014 and in press JACC Imaging 2015

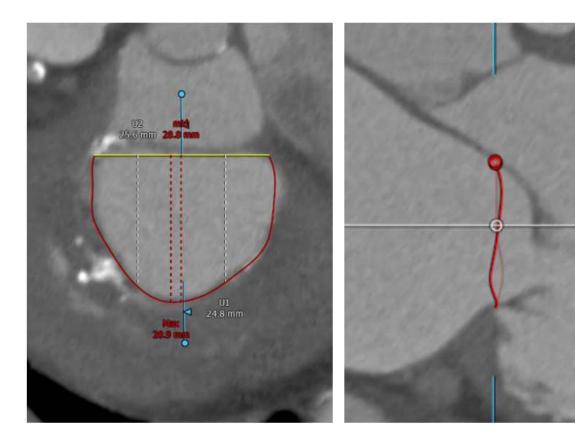
Saddled Annulus



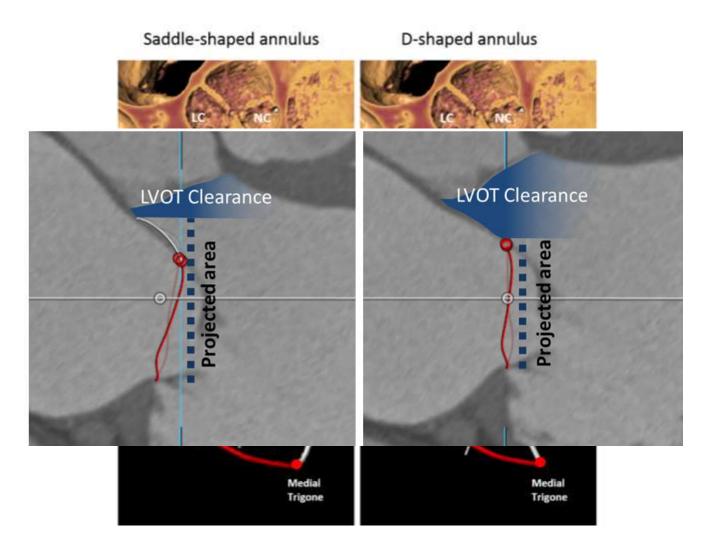

Traditional Method for Mitral Annular Assessment

"unsaddled" annulus

Conformational similarities with an implanted device in vivo


Source: Cheung et al. JACC 2014

Impact on Sizing and Device Selection


D-shaped annulus

Area	8.5 cm ²
3D-Perimeter	111 mm
2D-Perimeter	110 mm

TT	34 mm
SL	29 mm

Implications for Sizing and LVOT Clearance

Source: Blanke et al in press JACC Imaging

Conclusions

- MDCT is now well established as an important tool for annular sizing
- Allows for the discrimination of those patients historically at risk for annular rupture, coronary occlusion and PAR
- Field is moving from historical device selection based on sex or 2 D measurements to a truly individualized approach to THV selection
- Growing role in the assessment of risk of coronary occlusion in valve in valve procedures