Mitral Clip 2016: Indications, Clinical Data and Limitations

Ted Feldman, M.D., MSCAI FACC FESC

Evanston Hospital

21st CardioVascular Summit-TCTAP 2016 April 26- 29th 2016 COEX Seoul, Korea

Ted Feldman MD, MSCAI FACC FESC

Disclosure Information

The following relationships exist:

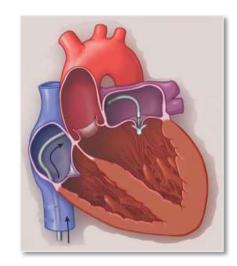
Grant support: Abbott, BSC, Cardiokinetics, Edwards, WL Gore Consultant: Abbott, BSC, Mitralign, WL Gore

Off label use of products and investigational devices will be discussed in this presentation

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 14, 2011

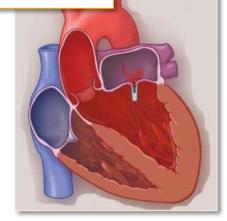

VOL. 364 NO. 15

Percutaneous Repair or Surgery for Mitral Regurgitation

Ted Feldman, M.D., Elyse Foster, M.D., Donald G. Glower, M.D., Saibal Kar, M.D., Michael J. Rinaldi, M.D., Peter S. Fail, M.D., Richard W. Smalling, M.D., Ph.D., Robert Siegel, M.D., Geoffrey A. Rose, M.D., Eric Engeron, M.D., Catalin Loghin, M.D., Alfredo Trento, M.D., Eric R. Skipper, M.D., Tommy Fudge, M.D., George V. Letsou, M.D., Joseph M. Massaro, Ph.D., and Laura Mauri, M.D., for the EVEREST II Investigators*

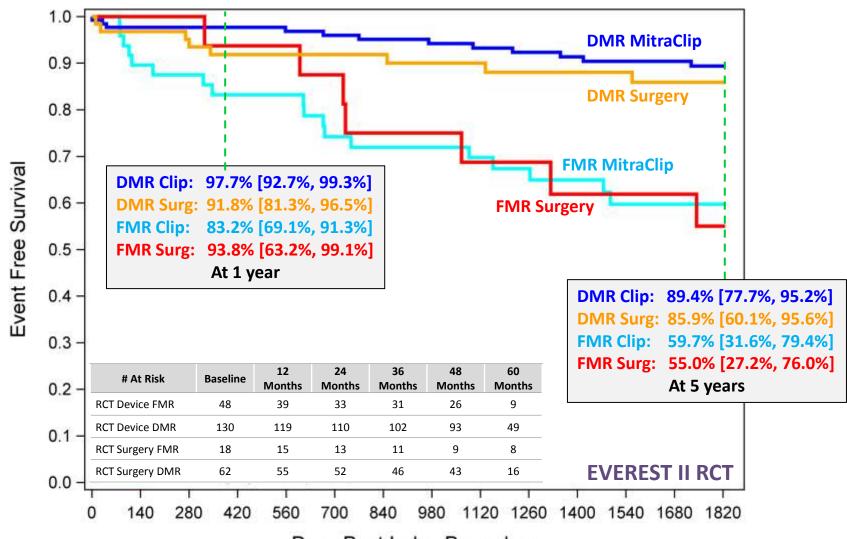
BACKGROUND

Mitral-valve repair can be accomplished with an investigational procedure that involves the percutaneous implantation of a clip that grasps and approximates the edges of the mitral leaflets at the origin of the regurgitant jet


CONCLUSIONS Although percutaneous repair was less effective at reducing mitral regurgitation than conventional surgery, the procedure was associated with superior safety and similar improvements in clinical outcomes.

> of the components of the primary end point were as follows: death, 6% in each group; surgery for mitral-valve dysfunction, 20% versus 2%; and grade 3+ or 4+ mitral regurgitation, 21% versus 20%. Major adverse events occurred in 15% of patients in the percutaneous-repair group and 48% of patients in the surgery group at 30 days (P<0.001). At 12 months, both groups had improved left ventricular size, New York Heart Association functional class, and quality-of-life measures, as compared with baseline.

CONCLUSIONS


Evanston Hospital

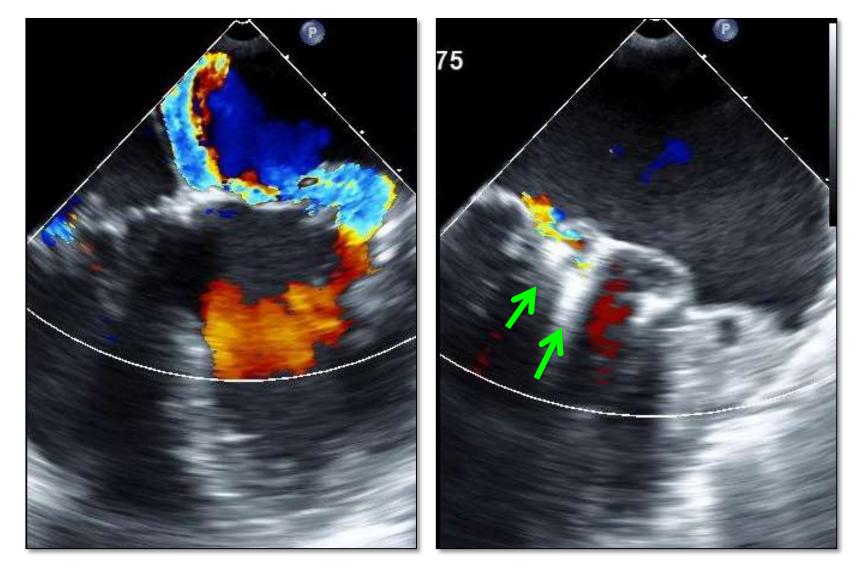
Although percutaneous repair was less effective at reducing mitral regurgitation than conventional surgery, the procedure was associated with superior safety and similar improvements in clinical outcomes. (Funded by Abbott Vascular; EVEREST II ClinicalTrials.gov number, NCT00209274.)

New Engl J Med 364:1395-1406, 2011

Freedom From Mortality & Reintervention

Kaplans Meier estimate

Days Post Index Procedure


MitraClip Clip Delivery System Approved October 24, 2013

Indication for Use:

The MitraClip Clip Delivery System is indicated for the percutaneous reduction of significant symptomatic mitral regurgitation (MR \ge 3+) due to primary abnormality of the mitral apparatus [degenerative MR] in patients who have been determined to be at prohibitive risk for mitral valve surgery by a heart team, which includes a cardiac surgeon experienced in mitral valve surgery and a cardiologist experienced in mitral valve disease, and in whom existing comorbidities would not preclude the expected benefit from reduction of the mitral regurgitation.

DMR Pre vs Post 2 Clips

Commercial MitraClip in the U.S.

STS/ACC TVT Registry

n=564 commercial cases enrolled in TVT registry through August 31, 2014 in-hospital & 30-day outcomes

N=564	%
Median age (% men)	83 yrs (56%)
HF hospitalization prior yr	51.8
Atrial fibrillation	62.6
Prior CVA	8.7
Diabetes	25
Prior CABG	32.4
Prior MI	24.6
O2 dependency	14.7
Median STS-PROM MV repair	7.9% (4.7, 12.2)
Median STS-PROM MV replacement	10.0% (6.3, 14.5)

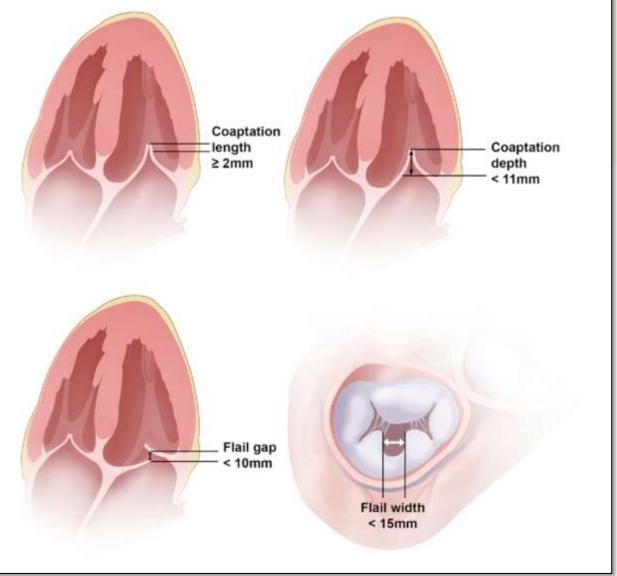
Evanston Hospital

Paul Sorajja ACC 2015

Commercial MitraClip in the U.S.

STS/ACC TVT Registry **OUTCOMES**

N=564	%
Etiology DMR	86
Procedure success	91.8
Resultant MR ≤2+	93
Device-related adverse events	2.7
Procedure complications	7.8
Hospital mortality	2.3
30 day mortality	5.8
Length of stay (days)	3±1.6
Discharge home	81.9

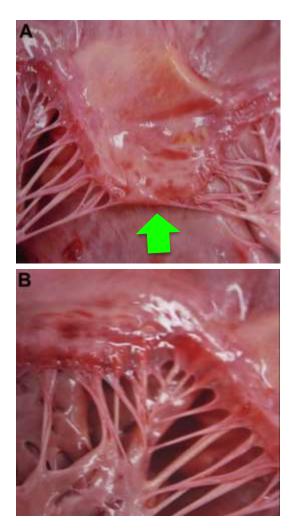


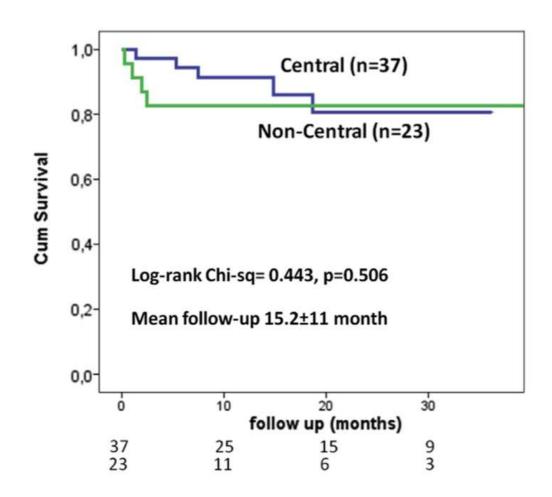
Percutaneous Mitral Repair With the MitraClip System

Safety and Midterm Durability in the Initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) Cohort

Ted Feldman, MD,* Saibal H James Hermiller, MD,|| Rich William Gray, MD,** Regina Elyse Foster, MD,|||| Donald

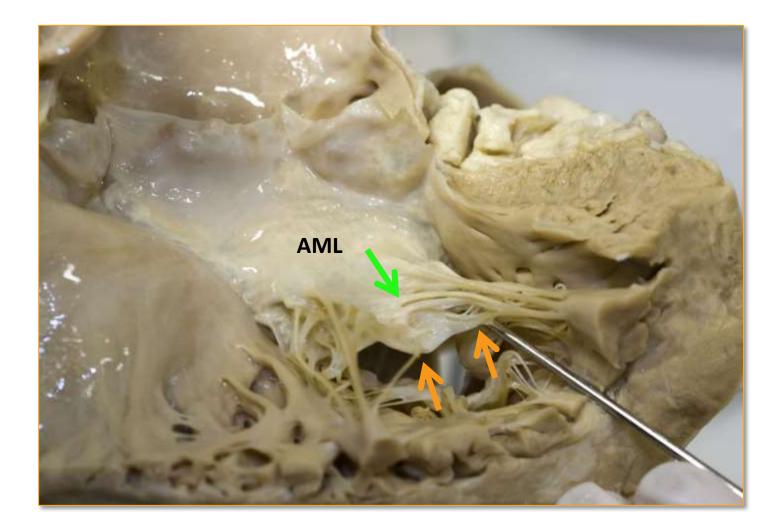
J Am Coll Cardiol 2009;54:686–94


Anatomic predictors of procedural success with the MitraClip system


- 123 patients age 77.5±8.0 years with EuroScore 29.8±21.5%
- failure (i.e., MR >2+, re-intervention, MV surgery, aborted procedure or leaflet detachment) in 16.8%
- Multivariable logistic regression identified
 - coaptation length <2.7 mm</p>
 - coaptation depth >6.3 mm

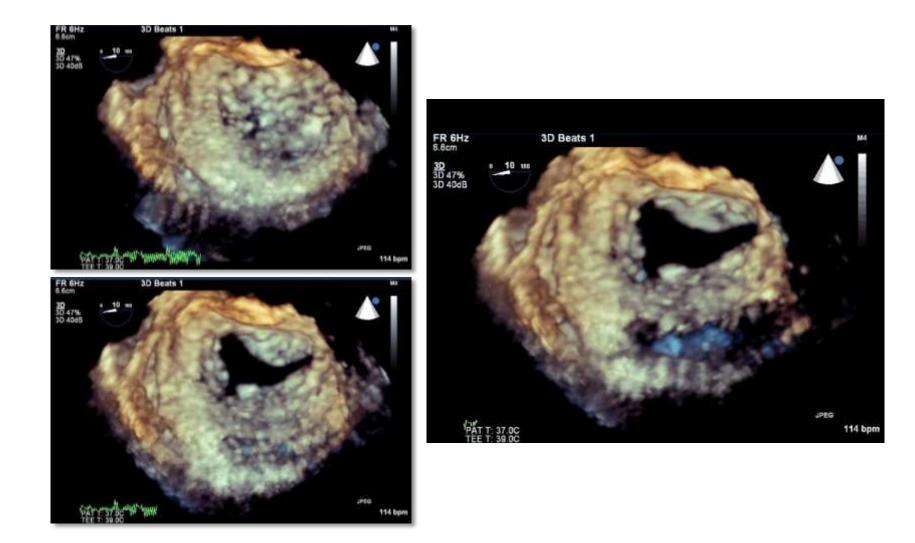
distance between papillary muscles >32 mm

Central vs Noncentral Percutaneous Edge-to-Edge for DMR



Central vs Noncentral Percutaneous Edge-to-Edge for DMR

Table 3 Periprocedural Adverse Events				
	$\begin{array}{l} \textbf{Overall} \\ \textbf{(N=79)} \end{array}$	Central (n = 49)	Non-Central (n $=$ 30)	p Value
Clip embolization	0 (0)	0 (0)	0 (0)	—
Partial clip detachment	2 (2.5)	1 (2)	1 (3.3)	1.000
Prolonged clip entanglement	0 (0)	0 (0)	0 (0)	1.000
Chordal rupture	1 (1.2)	1 (2)	0 (0)	1.000
Cardiac tamponade	1 (1.2)	1 (2)	0 (0)	1.000
Gastro-intestinal bleeding	2 (2.5)	1 (2)	1 (3.3)	1.000
Stroke	0 (0)	0 (0)	0 (0)	_
Transient AV block	1 (1.2)	1 (2)	0 (0)	1.000
Pneumonia	1 (1.2)	1 (2)	0 (0)	1.000
Mitral valve surgery	1 (1.2)	1 (2)	0 (0)	1.000
Death	1 (1.2)	0 (0)	1 (3.3)	1.000
All complications	10 (12.6)	7 (14.3)	3 (10)	0.734



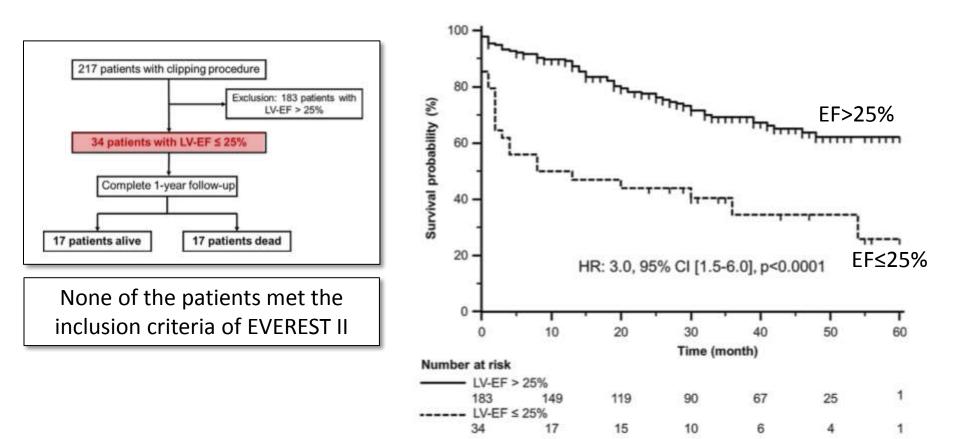
Unsupported Leaflet

Cleft

Patient selection criteria and midterm clinical outcome for MitraClip therapy in patients with severe mitral regurgitation and severe congestive heart failure

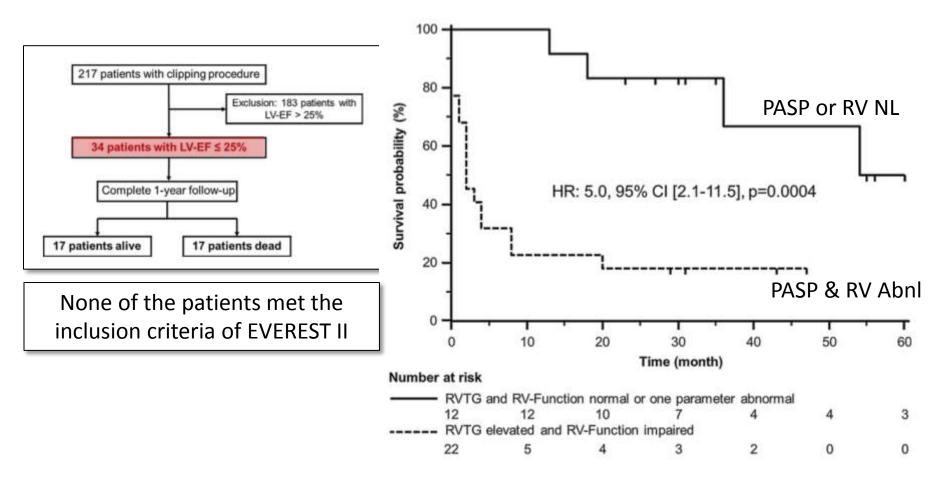
Michael Neuss^{*†}, Thomas Schau[†], Maren Schoepp, Martin Seifert, Frank Hölschermann, Jürgen Meyhöfer, and Christian Butter

 Table 4 Predictors of the combined event (primary endpoint: combination of all-cause mortality, left ventricular assist


 device implantation, mitral valve surgery, unsuccessful implantation) in univariate and multivariate analysis (Cox model)

Parameter	Univariate analysis		Multivariate analysis model	: optimized
	HR (95% CI)	P-value	HR (95% CI)	P-value
NT-proBNP >10 000 pg/mL	4.6 (2.6-8.2)	<0.001	3.5 (1.9–6.7)	< 0.001
Age >80 years	1.8 (1.0-3.3)	0.046	2.2 (1.2-4.2)	0.008
Serum creatinine >150 mmo/L	2.4 (1.4-4.3)	0.002		
NYHA class IV	2.1(1.2-3.7)	0.008	1.7(1.0-3.2)	0.049
TAPSE <15 mm	3.2 (1.8-5.6)	< 0.001	1.9(1.0-3.6)	0.038
TR grade $>2 +$	2.0 (1.0-4.0)	0.052		

CI, confidence interval; HR, hazard ratio; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation.



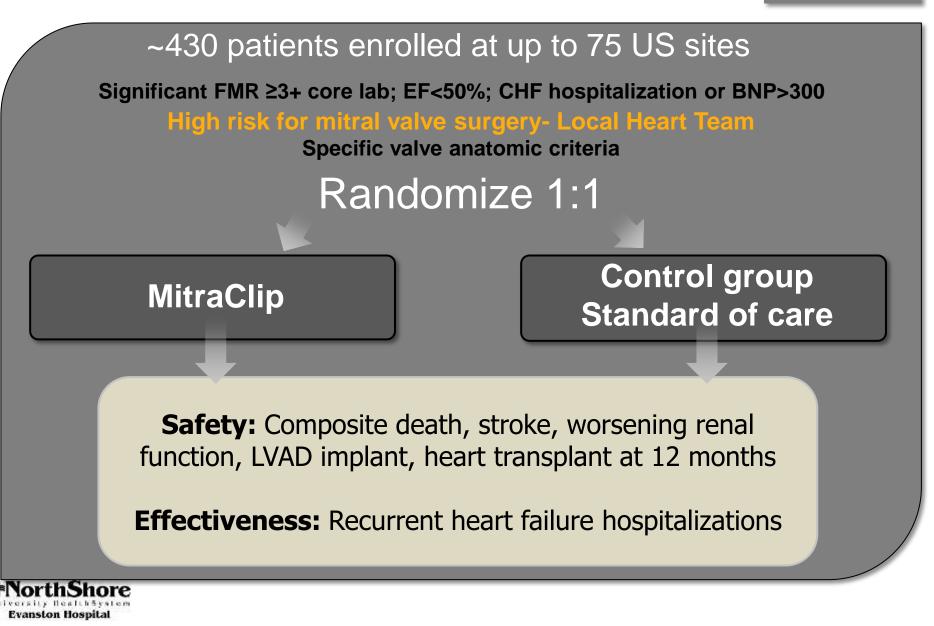
Long-Term Outcome of Patients with Severe Biventricular Heart Failure after MitraClip *Predictive valve of LVEF*

Long-Term Outcome of Patients with Severe Biventricular Heart Failure after MitraClip *Predictive valve of PASP + RV function*

Registries

Prospective-Multicenter

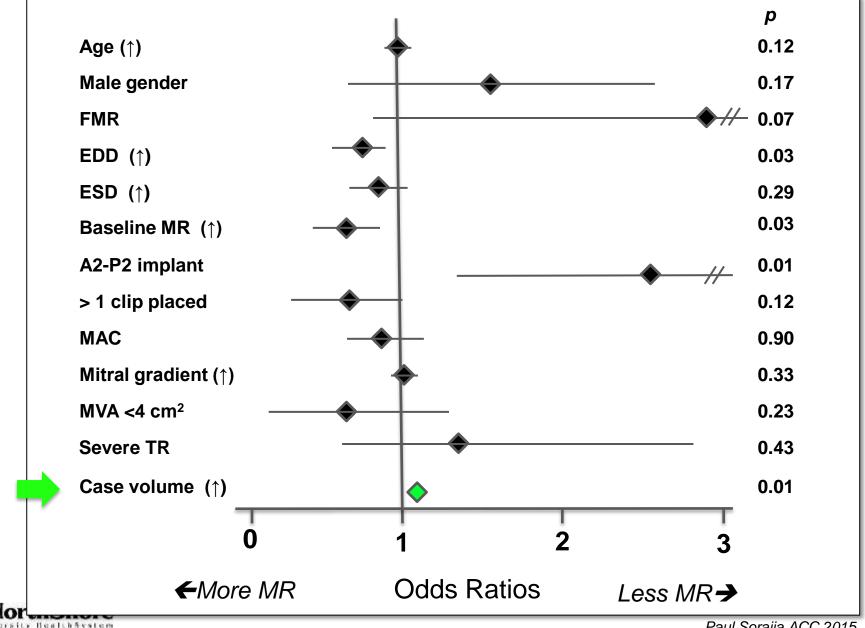
Study	n
REALISM US Continued Access	899
REALISM Compassionate/Emergency Use	66
ACCESS Europe Phase I	567
ACCESS Europe Phase II	286
German Transcatheter Mitral Valve Interventions (TRAMI)	1002
GRASP-It	304
MitraSwiss registry nationwide	265
Sentinel Registry EURObservational Research Programme ESC	628
MitraClip Asia-Pacific Registry (MARS)	145
ANZ MitraClip Registry	45


Therapy for MR

	Degenerative	Functional
Low Surgical Risk	Surgical Mitral Repair	??
High Surgical Risk	Commercial MitraClip	COAPT

Clinical Outcomes Assessment of the MitraClip Percutaneous Therapy for High Surgical Risk

MitraClip RCTs in Functional MR


1348 patients Heart failure and FMR MitraClip vs. GDMT or MV Surgery

• COAPT – 430

- MITRA-FR 288
- RESHAPE-HF-2 420
- MATTERHORN (vs MVS) 210

TVT Registry: Residual MR

Evanston Hospital