Top Ten Lessons for Complication Free TAVR

Susheel Kodali, MD

Director, Heart Valve Center Director, Interventional Cardiology Fellowship Program Columbia University Medical Center

Disclosure Statement of Financial Interest Susheel K. Kodali, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Honoraria
- Steering Committee
- SAB

Company

- St. Jude Medical, Claret Medical
- Edwards Lifesciences, Claret Medical
- Thubrikar Aortic Valve, Inc, Dura Biotech, VS Medtech

Keys to a Successful Procedure

Top Ten Tricks for Success

10. Understand limits of transfemoral approach

Major Vascular Complications Increase Mortality

Généreux et al. J Am Coll Cardiol. 2012;60:1043-52.

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian

Predictors of VARC major vascular complications

By multivariate analysis, the independent predictors of VARC major vascular complications were

> The Sheath to Femoral Artery Ratio (SFAR)

$$-$$
 HR = 19

Jore

HR = 3.44 (p=0.026)

Table 5. Univariate and Multivariate Analysis of the Clinical and Procedural Characteristics According to the Incidence of VARC Major Vascular Complications

2.

3

Hayashida K. JACC Cardiovasc Interv 2011

.023)

COLUMBIA UNIVERSITY

Device Evolution -> Smaller Sheath Sizes

COLUMBIA UNIVERSITY MEDICAL CENTER

Smaller Sheath Size Results in Lower Complications

From PARTNER 2B and S3 HR

Patient selection

Vascular Access Screening CTA: 3D reconstruction

Evaluate Calcification - Vascular MIP

1.15mm Slab

60.0mm Slab

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian

Top Ten Tricks for Success

- 10. Understand limits of transfemoral approach
- 9. Beware limitations of e-Sheath

Edwards eSheath Expandable Introducer Sheath

DEM: Dynamic Expansion mechanism

- Allows for transient sheath expansion during valve delivery
- After the passage of the THV, allows the sheath to return to a low profile diameter
- Reduces the time the access vessel is expanded

9		1.5500	or the states
 Unexpanded			
-10-11-14		200	united and the second
Expanded			
	Q 🗢		
	Reduced		

During passage of the valve delivery catheter, sheath diameter can increase up above 8 mm for a 29mm valve

Evaluate the Entire Vascular Tree

E-sheath may cause damage if device doesn't exit at tip of sheath

Evaluate entire vascular tree and use caution with eSheath

- Valve deployed with excellent result
- Sheath removed and perclose notes delivered
- Patient becomes hypotensive

Top Ten Tricks for Success

10. Understand limits of transfemoral approach

- 9. Beware limitations of e-Sheath
- 8. Be prepared to deal with complex vascular anatomy

Tortuous Vasculature

How to avoid vascular complication in this case?

Tortuous Vasculature – Use of two stiff wires

Two Meier Wires

One Extra Stiff Wire

Tortuous Vasculature – Use of two stiff wires

Meier wire kept in pigtail until Novoflex delivery catheter advanced through sheath to prevent kinking

Calcified and Tortuous Iliacs

- Vessel size > 8mm
- Severe calcification
- Severe tortuosity

ARDHUMANCIILAN REBEARCH O U N D A T I O N A Passing for Insensation

Calcified and Tortuous Iliacs

- Separation between capsule and nosecone can lead to vascular damage
- > Options
 - > Stiff wire
 - Solopath sheath

Top Ten Tricks for Success

10. Understand limits of transfemoral approach

- 9. Beware limitations of e-Sheath
- 8. Be prepared to deal with complex vascular anatomy
- 7. Appropriately size the annulus to prevent PVL

Aortic Annulus

- Annulus Sizing
 - The aortic annulus is a complex 3 dimensional

Any single diameter cannot adequately characterize the annulus "size" due to its elliptical non-circular configuration

each aortic cusp

Annular Measurements

COLUMBIA UNIVERSITY MEDICAL CENTER

NewYork-Presbyterian

Kasel 2013

Understand what you are measuring is not a static structure

Variability throughout the Cardiac Cycle

Leipsic et al Circ Imaging Jun 2013

COLUMNIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian

A poorly performed analysis can be dangerous

Example of Incorrect Plane – Wrong Orientation

Beware of Artifacts

stair step/misalignment artifact

Know your device characteristics

Blanke et al. EuroPCR 2015

Willson et al. JACC April 3 2012

COLUMBIA UNIVERSITY MUDICAL CENTER

Top Ten Tricks for Success

10. Understand limits of transfemoral approach

- 9. Beware limitations of e-Sheath
- 8. Be prepared to deal with complex vascular anatomy
- 7. Appropriately size the annulus to prevent PVL
- Understand limitations of anatomy (Don't push your luck!)

Impact of Landing Zone Anatomy

In certain cases, patient anatomy will dictate PVR result

Impact of Severe LVOT Calcium

- Perimeter: 72 mm Area 404 mm2
- Diameter: Max 24 mm Min 17 mm
- Severe protruding 6 mm calcification in the posterior region of the aortic annulus.
- The calcification extends deeply into the LVOT

Valvular Heart Disease

Anatomical and Procedural Features Associated With Aortic Root Rupture During Balloon-Expandable Transcatheter Aortic Valve Replacement

Marco Barbanti, MD; Tae-Hyun Yang, MD, Josep Rodès Cabau, MD; Corrado Tamburino, MD;
David A. Wood, MD; Hasan Jilaihawi, MD; Phillip Blanke, MD; Raj R. Makkar, MD; Azeem Latib, MD; Antonio Colombo, MD; Giuseppe Tarantini, MD; Rekha Raju, MD; Ronald K. Binder, MD; Giang Nguyen, MD; Melanie Freeman, MD; Henrique B. Ribeiro, MD; Samir Kapadia, MD;
James Min, MD; Gudrun Feuchtner, MD; Ronen Gurtvich, MD; Faisal Alqoofi, MD; Marc Pelletier, MD;
Gian Paolo Ussia, MD; Massimo Napodano, MD; Fabio Sandoli de Brito, Jr, MD; Susheel Kodali, MD;
Bjarne L. Norgaard, MD; Nicolaj C. Hansson, MD; Gregor Pache, MD; Sergio J. Canovas, MD; Hongbin Zhang, PhD; Martin B. Leon, MD; John G. Webb, MD; Jonathon Leipsic, MD

Higher calcium in the K coronary LVUI

- No difference if small or large valve
- No difference if sinus large vs effaced
- No difference if annulus eccentric
- Annular oversizing (>20%) (OR 8.38)
- Post-dilation (same size, 1-2 mm larger)

(Circulation. 2013;128:244-253.)

COLUMBIA UNIVERSITY

26mm Evolut Deployed

Aortogram

Evolut Deployed

Severe PVL despite Post-Dilatation

What to do next?

Paravalvular Leak Closure

- Crossing the PVL:
- 5 Fr AL1 diagnostic catheter
- Soft angled Glidewire – Terumo
- TTE guided

Paravalvular Leak Closure

- Deliver distal portion
 of 8 mm AVP II
- Pull Catheter and AVP as a system
- Reposition if necessary
- Deploy, push Catheter and review before releasement

Paravalvular Leak Closure

Tug Test

Final Aortogram

TTE post PVLC

- Plug remained well seated.
- Final PVL: Trace
- EROA of the jet: 3 mm2
- AVA: 1.96 cm2
- PV 2 m/s, P/MG: 17/7 mmHg DI:0.69

COLUMNIA UNITYRASITY MEDICAL CENTER

Top Ten Tricks for Success

5. Find a coaxial view for proper deployment

Limitations of Fluoroscopy

Finding a Coplanar View

Finding a Coplanar View

• CT can be used to identify the appropriate view, by aligning the inferior aspects of each valve cusp in the same plane

Optimal Aortography

- Challenge is using 2D imaging to deploy the valve
- Target coaxial alignment of catheter and annulus
- Adjust catheter and guidewire tension to ensure valve is aligned within the annulus and perpendicular to the basal plane

Edwards Commander delivery system

Distal hyperflexion and fine control knob allows for improved coaxial positioning of the valve

Sapien 3 Deployment

- Valve positioned so that central marker just above annulus
- During deployment, valve foreshortens from ventricular side (up to 8.5mm)
- Ideal position is for Sapien 3 valve to sit 0-3mm below annulus

Beware of Parallax

What happens if you deploy with parallax? non-coaxial valve position

COLUMNA UNIVERSITY

Top Ten Tricks for Success

- 5. Find a coaxial view for proper deployment
- 4. Proper wire position in LV crucial

Guidewire Management

- Wire position in the LV apex crucial for successful deployment
- Proper wire position
 results in device
 stability and fine
 adjustments in device
 position can be made
 by pushing or pulling
 on the wire
- A stiff guidewire should be used

The Medtronic Confida™ Guidewire

- Preshaped wire retains its shape
- Increased stiffness may result in difficulty maintaining position in apex in hyperdynamic LV

Top Ten Tricks for Success

- 5. Find a coaxial view for proper deployment
- 4. Proper wire position in LV crucial
- 3. Treat critical CAD (especially in patients with depressed LV function)

CAD – When to treat?

QUESTIONS – Treat or Not Treat

- Is there an unstable lesion ? ACS ?
- Are the symptoms related to AS or CAD ?
- Is the lesion located in a critical location ? LM pLAD ?
- What is LV function?
- Will the pt tolerate hypotension (pacing runs) during TAVR ?
- What is the LVEDP- coronary perfusion pressure ?

Treatment Algorithm

Paradis JM,....Kodali, SK, EHJ 2014

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian

Timing of PCI

- Staged PCI in patients with CRI or complex coronary anatomy
- Consider BAV prior to PCI in patients with elevated filling pressures, depressed LV function, etc.
- Same setting PCI is safe and feasible with simple lesions
- PCI post TAVR is feasible but poses challenges
- Randomized trials in the future may provide answers

Top Ten Tricks for Success

- 5. Find a coaxial view for proper deployment
- 4. Proper wire position in LV crucial
- 3. Treat critical CAD (especially in patients with depressed LV function)
- Intraprocedural TEE crucial in high risk cases (? early experience)

Role of Intraprocedural TEE

Risk Assessment

- Aortic Annulus
- Aortic Valve Morphology/Ca
- Aortic Root and LVOT
 - Aortic root morphology
 - Ectopic calcification
 - Sigmoid septum
- Wire position
 - Mitral Valve apparatus
 - Left Ventricular size and function
- Balloon Aortic Valvuloplasty
- Positioning and deployment of THV
 - Aortic valve, root and LVOT morphology

Hemodynamic Emergencies

- Aortic/AV trauma
 - Periaortic hematoma
 - Aortic dissection
 - Annular rupture
- Pericardial tamponade
- Mitral valve compromise
- Left main coronary occlusion
- Severe aortic regurgitation
 - Central regurgitation
 - Paravalvular regurgitation

TEE can help identify cause of hypotension quickly

Use of TEE to Prevent Root Injury Bicuspid Aortic Valve

Threatened Aorta

CAVEAT: Controlled Deployment: Slow stretch of native tissue and deployment stopped prior to injury

COLUMBIA UNIVERSITY MEDICAL CENTER

Top Ten Tricks for Success

- 5. Find a coaxial view for proper deployment
- 4. Proper wire position in LV crucial
- 3. Treat critical CAD (especially in patients with depressed LV function)
- Intraprocedural TEE crucial in high risk cases (? early experience)
- 1. Careful vascular access management after closure

Completion Angiogram

- Completion angiogram should be performed everytime
 - Early identification of complications
 - Minor bleeding and stenosis can be controlled with balloon inflation and reversal of anticoagulation
- After procedure complete, hold gentle pressure for 10-15 minutes
- Monitor for 24 hours for vascular complications
 - Low threshold for ultrasound imaging

Completion Angiogram Can Prevent Major Complication Occlusive dissection

 Balloon advanced across arteriotomy and inflated at <1 atm for 2 minutes
 If flow atill compremised, consider colf expending stort

♦ If flow still compromised, consider self-expanding stent

Top Ten Tricks for Success

- 5. Coaxial view crucial for proper deployment
- 4. Proper wire position in LV crucial
- 3. Treat critical CAD (especially in patients with depressed LV function)
- Intraprocedural TEE crucial in high risk cases (? early experience)
- 1. Careful vascular access management after closure

Final Thought – Experience Improves Outcomes

Experience improves outcomes

In-Hospital Mortality

Carroll, ACC 2016

Concession University

Thank you!

