

ANGIOPLASY SUMMIT 2016 TCT ASIA PACIFIC

Seoul, Korea: 26-29 April 2016

Live Cases & Lecture Session II. BRS

Tips and Tricks to optimize acute and long-term BRS outcomes

Speaker – 12'

Antonio Colombo

Centro Cuore Columbus and S. Raffaele Scientific Institute, Milan, Italy

Do not expect they may lower the risk of Thrombosis or Restenosis

It is unlikely they will shorten the need for DAPT after 1 year unless you assume that DAPT needs to be continued long term following implantation of current DES

They will allow positive remodeling, maintain vessel reactivity and facilitate new procedures (PCI/CABG)

They allow easy evaluation by MSCT

They may lower the risk of very late Stent Thrombosis

LCX CTO & IM stenosis

Mesured lumen area at 18 slices

.....

Mean lumen area $4.9 \pm 0.2 \text{ mm}^2$

SAN RAFFAELE

Mean lumen area 7.3 \pm 0.9 mm²

Pulsatile motion

Lesion preparation

More important role for...

BRS delivery

Larger crossing profile with bulky struts

Ormiston et al. EuroIntervention 2015;11:60-67

Scaffold expansion

- Less radial force and greater acute recoil
- Inadequate lesion preparation may correlate with underexpansion

Brown et al. Cather Cardiovasc Interv 2014;84:37-45 Mattesini et al. J Am Coll Cardiol Intev 2014;7:741-750 Danzi et al. Cather Cardiovasc Interv 2015;

1:1 pre-dilatation with NC / Low threshold for debulking devices

Lesion preparation with Angiosculpt

BRS deployment 1

Positioning / Minimize the overlap

- Overlapping site (with bulky struts) Delayed neointimal coverage ightarrow

Faroog et al. J Am Coll Cardiol Intev 2013; 6:523-532

- Greater thrombogenicity

Kolandaivelu et al. Circulation 2011;123:1400-9

Balloon marker to scaffold marker (mm)

		Expansion size	Proximal	Distal
		Crimp	1.1	
Absorb BRS φ2.5 or 3.0mmAbsorb BRS φ3.5mm	Absorb BRS	2.5 mm	0.9	0.0
	ф2.5 or 3.0mm	3.0 mm	0.9	0.3
		3.5 mm	0.7	
	Absorb BRS ф3.5mm	Crimp	1.4	
		3.5 mm	1.1	0.3
		4.0 mm	1.0	

It is important to know the marker position accurately

BRS deployment 2

Gentle deployment

Slow (2 atm per 5 sec) and long inflation (more than 30 seconds)

Avoid high-pressures with delivery balloon

Post-dilatation

Importance of Post-dilatation

- Acute lumen gain is lower for current BRS than metallic stents with similar pressures even in simplest lesion subset
 Ellis et al. N Eng J Med 2015/Kimura et al. Eur Heart J 2015 Gao et al. J Am Coll Cardiol 2015/Serruys et al. Lancet 2015
- High post-dilatation rates (over 90%) and pressures (over 20 atm) were associated with lower rates of ST
 Caiazzo et al. Int J Cardiol 2015:201;129-136

Risk with Overexpansion

 Overexpansion might cause strut disconnection and a focal loss of mechanical support
 Foin et al. Eurointerv2015; Sep, Epub

Non-oversized NC balloon with high-pressure (over 20 atm)

SAN RAFFAELE

Intravascular imaging

To assist Sizing

BRS requires more careful sizing
More difficult to correct after deployment

- Undersize → Malapposition → ✓ ST risk

Lorenz et al. J Am Coll Cardiol 2015:66:1901-14 Karanasos et al. Circ Cardiovasc Interv. 2015; 8:e002369

- Oversize — Increased foot print → ✓ Worse clinical outcomes

> End of procedure

✓ Side branch occlusion Kawamoto et al. J Am Coll Cardiol Intev 2016;Feb Ishibashi et al. J Am Coll Cardiol Intev2015;8:1715-1726 Muramatsu et al. J Am Coll Cardiol Intev2013:6;247-57

SAN RAFFAELE

To detect... - Underexpansion: more common with BRS

-Edge injury: more common(?) due to the need for more aggressive pre- and postdilatation

-Malapposition

Low threshold for Intravascular imaging especially at procedure end

IVUS images

Pre

Post NC φ3.0 18atm

Post NC φ3.0 23atm

SAN RAFFAELE

Impact of Final IVUS and aggressive post-dilatation

BRS expansion should be evaluated even after highpressure post-dilatation in a fibrous lesion.

Milan BVS experience

400 lesions in 264 patients with Absorb BRS

- San Raffaele Scientific Institute
- EMO GVM Centro Cuore Columbus
 - Milan, Italy

Patients characteristics

	N=264 patients
Age (years)	63.5 ± 10.5
Male, n (%)	236 (89.4%)
Hypertension, n (%)	167 (63.3%)
Dyslipidemia, n (%)	165 (62.5%)
Diabetes mellitus, n (%)	69 (26.1%)
Current smoker, n (%)	39 (14.8%)
Family history of CAD, n (%)	99 (37.5%)
Prior PCI, n (%)	116 (43.9%)
Prior CABG, n (%)	15 (5.7%)
Prior MI, n (%)	72 (27.3%)
eGFR<60, n (%)	49 (18.6%)
Ejection fraction (%)	55.2 ± 8.7
SYNTAX score	17.1 ± 10.4
Clinical presentation, n (%)	
Stable angina	228 (86.4%)
Unstable angina	31 (11.7%)
STMI/NSTEMI	5 (1.9%)

Lesion characteristics

Lesion	N=400 lesion, 264 Pt
Target vessel	
LAD	248 (62.0%)
LCX	79 (19.8%)
RCA	61 (15.3%)
LMT	10 (2.5%)
SVG	2 (0.5%)
No of target lesions per patient	1.5 ± 0.8
No of target vessels per patient (1/2/3)	195 (73.9%)/63 (23.9%)/6 (2.2%)
	ABSORB III Ghost EU
ACC/AHA class B2orC	299 (74.8%) 68.7% 53.5%
Bifurcation, n (%)	187 (46.8%) exclusion 23.1%
In-stent restenosis, n (%)	19 (4.8%)
Chronic total occlusion, n (%)	25 (6.3%)
Severe calcification	90 (22.5%)

OSPEDALE SAN RAFFAELE

Procedural characteristics

Lesion preparation			
Pre-dilatation, n (%)	389 (97.3%)		
Scoring or Cutting balloon	61 (15.3%)		
Rotablator, n (%)	19 (4.8%)		
Scaffold implantation			
Total scaffold number	1.5 ± 0.7		
Total scaffold length (mm)	35.2 ± 19.3		
Average scaffold diameter, mm	3.05 ± 0.35		
Use of 2.5mm scaffold, n (%)	130 (32.5%)		
Implantation pressure, atm	9.6±1.9		
Total scaffold number per patient	2.3 ± 1.3		Ghost EU
Total scafflold length per patient, mm	53.2 ± 32.5		
Use of 2.5mm scaffold per patient, n(%)	116 (43.9%)	20.5±7.2mm	32.6±23.0mm
Post-dilation			
Post-dilation, n (%)	399 (99.8%)		
Post-dilation pressure, atm	20.8 ± 4.5	65.5%	49%
Post-dilation balloon/scaffold diameter ratio	1.04 ± 0.08		
Intravascular imaging			
Intravascular imaging use, n (%)	343 (85.8%)		
Intravascular ultrasound, n (%)	328 (82.0%)	11.2%	14.4%
Optimal coherence tomography, n (%)	56 (14.0%)		
Further intervention following imaging			
after post-dilation, n (%)	98 (24.5%)		

OSPEDALE

SAN RAFFAELE

Clinical outcomes

median follow-up period of 544 (IQR 228 - 834) days

Event rates are estimated using Kaplan-Meier analysis

*1 Acute ST (STEMI, day 0, on DAPT) 1 Subacute ST (day 3, BVS edge dissection)

1 Late ST (stable angina, day 146, the patient stopped clopidogrel at 2-month)

Median based on pooled Absorb and Xience

1-Year ST in Very Small Vessels

Impact of Post-Dilatation and Pressure

2.5 mm Device Only* Target Lesion Failure

*As treated analysis

*As treated analysis

Ideal patient for BVS

• Diffuse disease of LAD requiring long stents

• Diffuse disease of any vessel 2.5 mm or larger requiring long stents

- Any lesion in a young patient
- Any lesion suitable for BVS