DCB or DES in SFA treatment

A difficult choice?

Herman Schroë , M.D. Limburgs Vaatcentrum ZOL Genk, Belgium

Disclosure

I have the following potential conflicts of interest to report:
 Consulting
 Employment in industry
 Stockholder of a healthcare company
 Owner of a healthcare company
 Other(s)
 I do not have any potential conflict of interest

PAD Treatment by Anatomy: Iliac, Femoropopliteal, Infrapopliteal

Percentage of patients with PAD who receive each therapy option only Global - 2012

Prevention of restenosis

What's the future treatment?

That one therapy is suitable for all lesions.

Restenotic Cascade

Wiskirchen, et al. Invest Radiol. 2004;39:565-71.

DCB Trial Outcomes

Between 12 and 24 months there is a marked loss in primary patency and rise in TLR

Results from different trials are not directly comparable. Information provided for educational purposes.

¹Albrecht T et al. LINC 2013; ²Tepe G et al. J of Am Coll of Cardiol Intv Jan 2015; ³Micari A Et al. J Am Coll Cardiol Intv Jan 2013; ⁴Laird J. TCT 2015; ⁵Zeller T et al. J et al. J et al. J Am Coll Cardiol Intv Jan 2013; ⁴Laird J. TCT 2015; ⁵Zeller T et al. J et al.

IN.PACT plus Systematic Stenting

Liistro et al., JACCI 2013

- 104 patients prospectively randomised
- IN.PACT + STENT vs PTA + STENT
- DCB improves stent results
- Less restenosis irrespective of lesion length or recanalisation technique

Stents used in Real World DCB studies

- Real world DCB studies show higher rates of provisional stenting then RCT
- Longer mean lesion length is correlated with higher provisional stenting rate

Provisional Stenting

Results from different trials are not directly comparable. Information provided for educational purposes.

¹Micari A Et al. J Am Coll Cardiol Intv 2012; ²Zeller T et al. J Endovasc Therapy 2014; ³Schmidt A. LINC 2013; ⁴Laird J. Endovacsular Today Feb 2015; ⁵Ansel G.

Todays practice ?

Comparing Outcomes of Treatments for Femoropopliteal Arterial Disease

- Katsanos et al : network meta-analysis of RCTs SFA
- Compared POBA, DCB, DES, bare nitinol stents, and covered nitinol stents
 - Vascular restensis lowest with DES and DCB
 - TLR lowest with DES and DCB

BNS, bare nitinol stent; CNS, covered nitinol stent; CrI, credible interval; PCB, paclitaxel-coated balloon; PES, paclitaxel-eluting stent; RCT, randomized controlled trial; RR, rate ratio; SES, sirolimus-eluting stent.

Not all DCB's are created equal but in general ...

✓ Better results compared to POBA

✓ Safe

DCB

- Endothelial loss → thrombosis
- Necrosis → ar
- → aneurysmal dilatation

Which

- Downstream effects
 - Ischemic changes
 - > Emboli
 - Changes in skelet muscle
 - Systemic toricity

2

Technique DCB

- ✓ Importance of geographic miss
- ✓ Influence of prolonged PTA
- ✓ Importance of predilatation?
 - Vessel prepration
 - Long balloon
 - Gradual dilatation
 Evidence? -> ILLUMENATE FIH
 - More accurate sizing
 - DES instead of DCB in case of bad result after predilatation
 - DCB cannot be used with DES in the same lesion : DRUGLOAD

1.Always instead of POBA

- Results better then POBA
- Combination with stent possible
- BUT : Economic impact ?

Pietzsch JB, Cath Cardiovasc Interv. 2014; 84:546-554 Dieh N, J endovasc Ther. 2013; 20:819-825 Kears BC, Br J Surg, 2013;100:1180-1188

DCB

✓2 . Long lesions ? **DCB**

DCB $\sqrt{4}$. Occlusions ?

Higher rate of baseline occlusive lesions corresponded with higher TLR rates at 1 year

¹Werk et al. Circ Cardiovasc Interv 2012; ²Tepe G et al. N Engl J Med 2008; ³Micari A Et al. J Am Coll Cardiol Intv 2012; ⁴Tepe G et al. Circulation 2015; ⁵Zeller T et al. J Endovasc Therapy 2014; ⁶Schmidt A. LINC 2013; ⁷Schroeder H et al. Catheter Cardiovasc Interv 2015; ⁸Laird J. Endovascular

✓5 . Calcified lesions?

- 60 patients with SFA stenosis or occlusion treated with DCB
- CTA, DSA, and IVUS used to quantify the calcium burden
- At 1 year, greater calcification was associated with:
 - Lower patency (50% for 270° 360° vs 100% for 0° 90°)
 - Lower ABI
 - Greater late lumen loss and TLR rate

Fanelli F, et al. Cardiovasc Intervent Radiol. (2014) 37:898-907.

Calcium associated with lower DCB efficacy

- **DEFINITIVE AR**: directional atherectomy + DCB vs DCB alone
- Removing calcium via adjunctive atherectomy may improve procedural and clinical outcomes following DCB treatment of the SFA and/or popliteal artery, particularly for longer or severely calcified lesions

	DCB	Ath + DCB
Technical Success*	64.2%	89.6%
Bail-out Stent	3.7%	0%
Flow-limiting Dissection	19%	2%

Zeller, VIVA 2014.

*Technical success: Defined as ≤ 30% residual stenosis following the protocol-defined treatment at the target lesion as determined by the Angiographic Core Laboratory. DCB, drug-coated balloon; DUS, duplex ultrasound; SFA, superficial femoral artery

Results from different trials are not directly comparable. Information provided for educational purposes.

¹Micari A Et al. J Am Coll Cardiol Intv 2012; ²Tepe G et al. Circulation 2015; ³Zeller T et al. J Endovasc Therapy 2014; ⁴Schroeder H et al. Catheter Cardiovasc Interv 2015; ⁵Laird J. Endovascular Today Feb 2015; ⁶Ansel G. TCT 2015; ⁷Matsumura et al. J of Vasc Surg. Jul 2013; ⁸⁻⁹www.accessdata.fda.gov; ¹⁰www.endovascularmagazine.eu 2013;

¹¹Powell, R. Charing Cross 2015; ¹²Dake MD et al. Circ Cardiovasc Interv 2011; ¹³ Müller-Hülsbeck, S. VIVA 2015.

6 . Popliteal lesions ? DCB

7. Flow limiting dissoction

DCB

Predilatation with flowlimiting diagonal

or PTA DC

eraph

. the margins of DCB

uss)

DES vs DCB Consideration

HOW IS DCB DIFFERENT FROM DES

Parameters that distinguish DCB from DES	DES	DCB
Drug concentration on the device	Low 5-10 µg/mm	Very High 2-3 µg/mm² (≒20-30 µg/mm)
Drug transfer at the time of deployment	Slow	Rapid, all at once
Reservoir of drug	Polymer	No (excipient important)
Drug retention in tissues	Short term	Need a drug which binds to cell membranes and is easily transferable to adjacent cells
Diffusion	Good	Excellent
Lipophilic	yes	Even better
Active ingredient	Not necessary	Should be active immediately

DES Coating Design Specifications

	Zilver PTX	Eluvia
Drug	Paclitaxel	Paclitaxel
Coating Design	No carrier	PROMUS Polymer
Drug/Total Dose	3μg/mm² 8 x 120mm = 1112 μg	0.167μg/mm² 7 x 150mm = 517 μg
Size Matrix	6-8mm 40-120mm	6 & 7mm 40-150 mm
SEM Image 100x		

Clinical Probability of Restenosis Following SFA Stenting

Restenosis following nitinol stenting in the SFA peaks at around 12 months

CLINICAL HISTORY OF RESTENOSIS

- Timing of SFA restenosis is longer compared to coronary stenting, which predominantly occurs within 6 months after stenting
- Factors for restenosis in the SFA include the number of runoff vessels, severity of lower limb ischemia, and length of diseased segments

Iida, O. et al. Cath and Cardiov Intv. 2011; 78:611–617. Kimura **P**, et al. N Engl J Med 1996;334:561–567.

DES Sustained Drug Release

DRUG RELEASE OVER TIME

Drug release from the Eluvia system is sustained over time

- >90% of drug is released at 1 year
- Drug release coincides with the restenotic cascade

Based on pre-clinical PK analysis. Data on file at Boston Scientific. *Dake MD, et al. J Vasc Interv Radiol. 2011;22(5):603-610.

Results Zilver PTX - Eluvia

Imperial trial including / 485 patients 2:1 Eluvia vs Zilver PTX

[1] Dake MD et al. Circ Cardiovasc Interv. 2011. [2] Müller-Hülsbeck, S. CIRSE 2015.

Leave nothing behind Shift in strategy?

- The strategy of leaving nothing behind is based on the assumption that a future intervention is inevitable...
- What is the threshold to this shift in strategy ?
 How low should reintervention rates be?
 How high should patency rates be?
 Threshold for stent fracture rate?
 In certain lesions, should primary DES be considered?

DCB vs DES in PAD

Severe calcium

initial adjunctive atherectomy and/or DES Predilate to assess vessel response uncoated balloon angioplasty

DCB vs DES

The "leaving nothing behind" concept

Conclusion

Drug-eluting technologies play an expanding role in endovascular treatment of PAD DE clinical data is driving real world adoption Adjunctive atherectomy + DCB a : growing trend / DES

- DCB is an important tool with proven evidence
 - o . in low calcified TASC A and B lesions
 - o . in instent restenosis
 - o . improving stent results
 - o. In popliteal lesions
- DES proves to be better in
 - o. calcified lesions
 - o. flow limiting dissections or reststenosis
- More evidence is needed in RCT's
 - o. DCB with BMS vs DES
 - o. ideal treatment for long lesions ? bailout stenting
 - o. economic consequences