# Drug-Coated Balloons in the Femoro-popliteal Segment

### **Calcific Disease: All or Selective Use?**

Ravish Sachar MD FACC Physician-in-Chief UNC-REX Heart and Vascular Service Line University of North Carolina

### **Disclosure Statement of Financial Interest**

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

#### Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Ownership/Founder
- Other Financial Benefit

#### Company

- Medtronic, Boston Scientific, Gore
- Medtronic, Boston Scientific, Spectranetics
- Contego Medical
- CardioMEMs



### What do we know so far about DCB Efficacy and Vessel Calcification in the Fem Pop Segment?

- DCB are increasingly showing efficacy in RCTs, but long term data are lacking
- These trials excluded patients with severe calcification
- Hard to define severe calcification and definitions are not consistent across trials
- So when should we use DCBs as stand alone therapy???
- When should we use vessel prep technologies or resort to stenting???



### **IN.PACT SFA TRIAL EFFICACY OUTCOMES THROUGH 2 YEARS**



1. Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) or clinically-driven target lesion revascularization through 24 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment).

2. Number at risk represents the number of evaluable subjects at the beginning of the 30-day window prior to each follow-up interval.

### IN.PACT Global Long Lesion Imaging Cohort: Kaplan-Meier Estimate of Primary Patency



### CTO subset: Primary Patency<sup>1</sup> Results through 1 Year



### Illuminate Global Interim Data n=153





# WHAT ABOUT PATIENTS WITH SEVERE CALCIFICATION?



### **IN.PACT SFA TRIAL: Severe Calcification**

| TABLE 1 Baseline Patient and Procedural Characteristics |                                     |                                     |         |  |  |
|---------------------------------------------------------|-------------------------------------|-------------------------------------|---------|--|--|
|                                                         | IN.PACT<br>(n = 220)                | РТА<br>(n = 111)                    | p Value |  |  |
| Age, yrs                                                | $\textbf{67.5} \pm \textbf{9.5}$    | $\textbf{68.0} \pm \textbf{9.2}$    | 0.612   |  |  |
| Male                                                    | 65.0 (143/220)                      | 67.6 (75/111)                       | 0.713   |  |  |
| Diabetes                                                | 40.5 (89/220)                       | 48.6 (54/111)                       | 0.161   |  |  |
| Hypertension                                            | 91.4 (201/220)                      | 88.3 (98/111)                       | 0.431   |  |  |
| Hyperlipidemia                                          | 84.5 (186/220)                      | 82.0 (91/111)                       | 0.637   |  |  |
| Current smoker                                          | 38.6 (85/220)                       | 36.0 (40/111)                       | 0.719   |  |  |
| ABI/TBI*                                                | $\textbf{0.769} \pm \textbf{0.228}$ | $\textbf{0.744} \pm \textbf{0.189}$ | 0.308   |  |  |
| Rutherford clinical category                            |                                     |                                     | 0.898   |  |  |
| 2                                                       | 37.7 (83/220)                       | 37.8 (42/111)                       |         |  |  |
| 3                                                       | 57.3 (126/220)                      | 55.9 (62/111)                       |         |  |  |
| 4                                                       | 5.0 (11/220)                        | 5.4 (6/111)                         |         |  |  |
| 5                                                       | 0.0 (0/220)                         | 0.9 (1/111)                         |         |  |  |
| Lesion length, cm                                       | $\textbf{8.94} \pm \textbf{4.89}$   | $\textbf{8.81} \pm \textbf{5.12}$   | 0.815   |  |  |
| Total occlusions                                        | 25 8 (57/221)                       | 19 5 (22/113)                       | 0 222   |  |  |
| Severe calcification                                    | 8.1 (18/221)                        | 6.2 (7/113)                         | 0.662   |  |  |
| Dissections                                             |                                     |                                     | 0.360   |  |  |
| 0                                                       | 36.2 (80/221)                       | 38.9 (44/113)                       |         |  |  |
| A-C                                                     | 63.8 (141/221)                      | 60.2 (68/113)                       |         |  |  |
| D-F                                                     | 0.0 (0/221)                         | 0.9 (1/113)                         |         |  |  |
| Provisional stenting                                    | 7.3 (16/220)                        | 12.6 (14/111)                       | 0.110   |  |  |



# In.Pact Global Baseline Lesion and Procedural Characteristics

| Characteristic              | IN.PA<br>(# Lesions | CT<br>s=763) | Characteristic          | IN.<br>(n= | PACT<br>:655) |
|-----------------------------|---------------------|--------------|-------------------------|------------|---------------|
| Lesions per Patient         | 1.16                | ;            | Pre-Dilatation          | 75.4%      | (494/655)     |
| Popliteal Involvement       | 29.4%               | (224/763)    | Post-Dilatation         | 31.0%      | (201/648)     |
| De Novo Lesion              | 70.6%               | (539/763)    | Provisional Stent       | 24.7%      | (160/648)     |
| Restenotic Lesion (non-ISR) | 8.0%                | (61/763)     |                         | 00 49/     | (1264/1271)   |
| In-Stent Restenosis*        | 21.4%               | (163/763)    | Device Success          | 99.4%      | )             |
| Mean Lesion Length          | 12.23 cm            | ± 9.59       | Procedure Success       | 99.8%      | (646/647)     |
| Total Occlusions            | 35.8%               | (273/763)    | <b>Clinical Success</b> | 99.5%      | (644/647)     |
| Severe Caleification        | 10.4%               | (70/761)     |                         |            |               |
| RVD                         | <b>5.2 mm</b> :     | ± 0.7        |                         |            |               |
| Diameter Stenosis           | 88.7% ±             | 12.2         | ,                       |            |               |
| Dissection: 0               | 60.2%               | (459/762)    |                         |            |               |
| Dissection: A - C           | 33.9%               | (258/762)    |                         |            |               |
| Dissection: D - F           | 5.9%                | (45/762)     |                         |            |               |



\* IN.PACT Admiral is not currently approved for in-stent restenosis in the US.

## **Calcium Limits Vessel Expansion**

Significant difference in vessel compliance leads to overstretch in non-diseased tissue causing dissections, recoil, excessive injury, and poor outcomes



#### Figure 12.1. Elastic Recoil After PTCA of Calcified Lesions

Rather than cracking the hard, calcified atheroma, PTCA causes stretching of the contralateral plaque-free wall segment and ineffective dilatation.

Freed MS, Safian RD; Manual of Interventional Cardiology, Ch. 12, 245-254



# **Calcium May Limit Drug Effect**



1. Fanelli J Endovas Ther 2012;19:571-580. 2. Fanelli et al. Cardiovasc Intervent Radiol (2014) 37:898-907)

### SUSTAINED DRUG, SUSTAINED BENEFIT. IMPORTANCE OF DRUG "RESERVOIRS"



Solid-phase paclitaxel embeds in vessel wall, creating "reservoirs" of drug that are sustained over time.



Note: Study on file with Medtronic, represents 28-days post drug delivery.

#### SUSTAINED DRUG, SUSTAINED BENEFIT. PACLITAXEL EFFECT ON SMOOTH MUSCLE CELL



#### NORMAL ARTERIAL WALL



ADVENTITIA

SMC PROTEOGLYCAN / COLLAGENOUS MATRIX

#### IN.PACT DCB TREATMENT PORCINE FEMORAL ARTERY



#### ARTERIAL MEDIAL WALL CHANGES FOLLOWING IN.PACT DCB



SMC FOCAL LOSS; INCREASE IN PROTEOGLYCAN DEPOSITION



### Are there any clinical data to support this?



### Definitive AR: Angiographic Patency at 12 Months



### Levant II Trial : Patients with Calcification

|                               | DCB                 | Standard<br>PTA     | P-<br>value |
|-------------------------------|---------------------|---------------------|-------------|
| Two lesions treated           | 1.9%(6/316)         | 3.1%(5/160)         | 0.400       |
| Total Lesion Length(mm)       | 62.9±41.5(315)      | 63.6±40.3(160)      | 0.866       |
| Treated Length(mm)            | 107.7±47.0<br>(316) | 107.3±49.3<br>(160) | 0.933       |
| Calcification                 | 59.2%(187/316)      | 57.5%(92/160)       | 0.726       |
| Total Occlusion               | 20.6%(65/316)       | 21.9%(35/160)       | 0.741       |
| %DS post-treatment            | 23.4±12.3(316)      | 23.8±12.3(158)      | 0.703       |
| Bail-outStenting              | 2.5%(8/316)         | 6.9%(11/160)        | 0.022       |
| Dissection                    | 63.7%(200/314)      | 72.3%(115/159)      | 0.060       |
| Procedural Success (corelab)  | 88.9%(281/316)      | 86.8%(138/159)      | 0.497       |
| DeviceSuccess(no of balloons) | 99.5%(430/432)      | 100%(180/180)       | 0.367       |

### Levant II Trial 24 Month Primary Patency, Freedom from TLR, and Composite Safety

|                      | Lutonix | РТА   |        |
|----------------------|---------|-------|--------|
| Patency<br>@730 days | 58.6%   | 53%   | P=0.05 |
| Composite<br>Safety  | 78.7%   | 70.9% | P=0.08 |



### SO HOW SHOULD WE APPROACH OUR PATIENTS WITH CALCIFIC DISEASE?



# **Calcium May Limit Drug Effect**



1. Fanelli J Endovas Ther 2012;19:571-580. 2. Fanelli et al. Cardiovasc Intervent Radiol (2014) 37:898-907)

### **Treatment Algorithm Based on Calcification**

- A: Little to no calcification
  - DCB effective
  - Use Routinely
- C: Severe Circumferential Calcification
  - DCB alone likely ineffective
  - Consider prep with atherectomy or stent use
- B: Moderate Calcification Majority of our Patients
  - Unclear Long-term Outcomes data
  - But, likely effective



### Angiographic Assessment of Calcification is Not Always Accurate





### DEFINITION OF SEVERE CALCIFICATION: DEFINITIVE CA<sup>+</sup>

Severe Calcification



Radiopacities on both sides of arterial wall extending >1cm Moderate Calcification



Radiopacities on one side of arterial wall OR <1cm

### DEFINITION OF SEVERE CALCIFICATION: DEFINITIVE AR<sup>+</sup>



### **Group C: Severe/Circumferential Calcification**





### Do These Patients Have Moderate Or Severe Calcification??





REX HCARE

# UNDERSTANDING THE SCIENCE BEHIND THE OUTCOMES INTIMAL MODERATE POPLITEAL CALCIFICATION

NC REX HEALTHCAR



Courtesy of R. Virmani, MD

### Conclusions

- Severe circumferential calcium DCB alone probably will have reduced efficacy. Need some type of vessel prep.
- Moderate calcium Routine use of DCBs will probably work.
  - What is moderate calcium?
  - Can we standardize the definition?
- In these majority of these cases DCBs should still be routinely used
  - Post dilate if needed
  - Follow up with spot stenting with BMS or DES as needed
- Await long term data from DCB trials, especially in patients with heavy calcification



### **Thank You!**

