

Morning Roundtable Forum: Meet the Experts over Breakfast

Contemporary Practice and Technical Aspects in Coronary Intervention with BRS - A European Perspective -

Davide Capodanno, MD, PhD

Associate Professor of Cardiology University of Catania, Italy

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

EXPERT REVIEW

Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective

Corrado Tamburino¹, MD, PhD; Azeem Latib², MD; Robert-Jan van Geuns³, MD; Manel Sabate⁴, MD; Julinda Mehilli⁵, MD; Tommaso Gori⁶, MD, PhD; Stephan Achenbach⁷, MD; Manuel Pan Alvarez⁸, MD; Holger Nef⁹, MD; Maciej Lesiak¹⁰, MD; Carlo Di Mario¹¹, MD; Antonio Colombo², MD; Christoph K. Naber¹², MD; Giuseppe Caramanno¹³, MD; Piera Capranzano¹, MD; Salvatore Brugaletta⁴, MD; Salvatore Geraci¹³, MD; Aleksander Araszkiewicz¹⁰, MD; Alessio Mattesini¹¹, MD; Stylianos A. Pyxaras¹², MD; Lukasz Rzeszutko¹⁴, MD; Rafalo Depukat¹⁴, MD; Roberto Diletti³, MD; Els Boone¹⁵, MSc; Davide Capodanno^{1*}, MD, PhD; Dariusz Dudek¹⁴, MD

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

D. Capodanno

Frankfurt meeting, March 4, 2014

Informal collaboration of representatives from 14 European centers with a high volume of Absorb BVS procedures and representatives of the device manufacturer

- to explore different contemporary practices for the use of BVS
- to build a consensus on accepted technical approaches for BVS implantation
- to prepare a document summarizing the results of this joint effort

A survey-based and consensus approach in a data-free zone

To get the most objective snapshot of different practices among the participating centers, a survey with 45 multiple choice questions was prepared and conducted in October 2014.

The results of the survey served a basis for the technical advices provided in the document, and a source of information to highlight areas of controversy for further discussion by telephone conferences and e-mailing.

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy

Covered topics

SECTION I General implantation rules Evaluation of patient and lesion suitability Vessel sizing and scaffold selection Lesion preparation Scaffold implantation and optimization Intravascular imaging

SECTION II

Specific subsets and technical limitations

Bifurcations

Long lesions

Thrombotic lesions

Calcified lesions

In-stent restenosis

Post-treatment management

SECTION III

How to prevent and manage BVS complications

Scaffold disruption

Scaffold malapposition, restenosis, multiple interstrut hollows

Early scaffold thrombosis

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Evaluation of patient and lesion suitability

Question #7 - Which is the most frequent reason for choosing BVS in your centre? (multiple answers allowed)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Practical Operating Protocol for New BVS users

Impact of a BRS-specific implantation protocol

42 ScT in 1,305 patients from 4 German and Swiss centers

Early experience BVS-specific protocol

1 month

12 months

Adj. HR for a BVS-specific implantation strategy introduced in 2014 0.26 (0.08-0.90), P=0.035

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Puricel S, et al. J Am Coll Cardiol. 2016;67:921-31

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

BVS and bifurcation lesions

Provisional stenting remains the default strategy

- SB fenestration and T-FKI with no or minimal protrusion of the SB balloon can be performed at low pressure if necessary
- TAP is preferable for bailout SB stenting (easier with DES)
- T stenting, when feasible, should be the preferred technique for elective double stenting
 - A hybrid double-stenting strategy (BVS-MB and DES-SB) may be preferable to a two BVS strategy in case of true bifurcations with small SB and narrow bifurcation angle

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

BVS and long lesions

'Marker to Marker' (~1 mm of overlap)

'Scaffold to scaffold' (no overlap)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

COMPARE ABSORB

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy NCT02486068

BVS and thrombotic lesions

Theoretical advantages (vs. no supporting data)

- Reduction in distal embolisation due to the larger strut width, with a possible increased capacity to entrap thrombotic material between the scaffold and the vessel wall
- Bioresorption and positive vessel remodelling may offset the effect of device undersizing facilitated by acute phase vasoconstriction
- Scaffolds may result in a neo-cap formation acting as a protective layer shielding the underlying necrotic core

BVS and thrombotic lesions

133 patients undergoing BVS implantation for the treatment of thrombotic lesions in the setting of ACS (63% NSTE-ACS, 38% STEMI)

12-month clinical outcomes

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy Gori T, et al. JACC Cardiovasc Interv. 2015;8:770-7

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy Stone GW, TCT 2015

BVS and calcified lesions

163 patients treated with BVS (62 with calcified lesions)

MACE at 14 months

	Calcified	Noncalcified	Р
Acute gain, mm	1.86±0.63	1.83±0.60	0.73
Angiographic success	95.2%	98%	0.37
Periprocedural MI	13.1%	5%	0.07
Procedural success	83.9%	94.1%	0.03
Fluoroscopy time, min	48±18	39±17	0.02

"Not a free lunch!"

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Panoulas V, et al. EuroIntervention 2016;11:1355-1362

BVS and calcified lesions

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Capodanno D. EuroIntervention. 2016;11:1334-6

BVS and restenotic lesions

Rationale

The device should eventually disappear from the vessel wall, avoiding the presence of multiple stent layers ("onion skin")

Unkowns

- Lumen crowding due to strut thickness
- Device flexibility that may affect access to restenotic lesions
- Questions regarding radial strength and recoil

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Alfonso F, et al. J Am Coll Cardiol 2014;63:2875

BVS and restenotic lesions

84 patients with ISR treated with BVS (DES 96%, BMS 4%)

	6 months N=65	1 year N=49
Death	1/65 (1.5%)	2/49 (4.1%)
Myocardial infarction	1/65 (1.5%)	1/49 (2.0%)
Target lesion revascularization	2/65% (3.1%)	6/49 (12.2%)
Target vessel revascularization	3/65 (4.6%)	9/49 (18.4%)
Scaffold thrombosis	0 (0%)	0 (0%)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Jamshidi P, et al. EuroIntervention 2016;11:1479-1486

BVS and post-PCI management

Question #39 - How long do you recommend DAPT in stable angina patients treated with BVS?

degli STUD di CATANIA

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Covered topics

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

BRS failure: Knowledge gaps

Disruption Dismantling

Acute or acquired malapposition

Restenosis Neoatherosclerosis

Evaginations Hollows

To what extent can be tolerated? What is the fate of floating or embolized struts? What is the incidence and effect of acute, persistent and lateacquired ISA?

Can we identify predictors? Which treatment strategy? Cavities and peristrut contrast staining: are they innocent bystanders?

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Definite or probable thrombosis in randomized trials of BRS versus EES

	BVS	EES	Fixed-effect OR	Fixed-effect OR BRS:EES
	n/N	n/N	(95% CI)	(95% CI)
ABSORB China	1/238	0/232	7.21 (0.14-363.23)	
ABSORB II	3/335	0/166	4.49 (0.04-49.92)	
ABSORB III	20/1301	5/675	1.89 (0.82-4.34)	
ABSORB Japan	4/262	2/133	1.02 (0.18-5.58)	
EVERBIO	0/78	0/80	Not estimable	
TROFI II	1/95	0/96	7.47 (0.15-376.35)	
Overall	29/2309	7/1382	1.99 (1.00-3.98)	

Favors BRS ¹ Favors EES

Heterogeneity: χ 2=1.90, df=4; p=0.75; I2=0%; Test for overall effect: Z=1.96; p=0.05 Random-effects odds ratio 1.99 (95% CI 1.00–3.98)

Cassese S, et al. Lancet. 2016;387:537-44

Management of early BRS thrombosis

Thrombectomy

Optical coherence tomography

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Contemporary practice and technical aspects in coronary intervention with BRS - Closing remarks -

- Appraising the knowns and unknowns of a new technology is critical, particularly in the earlier phases of its introduction and implementation in daily practice.
- A standardised approach to optimal implantation techniques may have an impact on blunting the rates of early and late scaffold failure.
- The EIJ document aims at disseminating harmonized criteria for BVS use, and to provide education and practical advice in a field where evidence is rapidly accumulating.

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy dcapodanno@gmail.com