

# Pitfalls with Comparative Assessment of BRS and DES with Angio, IVUS and OCT

### April 28 7:30-7:40 AM

#### Patrick W. Serruys, MD, PhD

**Emeritus Professor of Medicine Erasmus University, Rotterdam, The Netherlands Professor of Cardiology Imperial college, London, UK** 

Yohei Sotomi, MD Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Yoshinobu Onuma, MD, PhD Erasmus MC, Rotterdam , The Netherlands



|                            | Metallic<br>(Xience)               | PLLA Bioresorbable<br>(ABSORB)     |  |
|----------------------------|------------------------------------|------------------------------------|--|
| Platform                   | Cobalt chromium                    | Poly-L-lactide (PLLA)              |  |
| Polymer coating            | Nonerodable fluoro-polymer         | Poly-D,L-lactide (PDLLA)           |  |
| Anti-proliferative<br>drug | Everolimus 100 µgr/cm <sup>2</sup> | Everolimus 100 µgr/cm <sup>2</sup> |  |
| Drug release               | 80% in 1 month<br>100% in 4 months | 80% in 1 month<br>100% in 4 months |  |
| Strut thickness            | 87 µm                              | 156 µm                             |  |
| <b>Radio-opacity</b>       | Radio opaque                       | Radio-lucent                       |  |
| <b>Optical property</b>    | Opaque                             | Translucent                        |  |

Nakatani, Sotomi, Serruys, and Onuma et al. EuroIntervention 2015



- Angiography
- MSCT
- IVUS
- IVUS-VH
- **OCT**

#### Nakatani, Sotomi, Serruys, and Onuma et al. EuroIntervention 2015

Angiography

**MSCT** 

IVUS

OCT

**IVUS-VH** 

ullet

•

igodot

ightarrow

## **Stents vs. Scaffolds**





- Angiography ullet
- **MSCT** ightarrow
- **IVUS** •

 $\bullet$ 

**IVUS-VH** ightarrowOCT



Nakatani, Sotomi, Serruys, and Onuma et al. EuroIntervention 2015





- **MSCT** ightarrow
- IVUS

ightarrow

**IVUS-VH**  $\overline{}$ OCT





PLLA

24-month



Nakatani, Sotomi, Serruys, and Onuma et al. EuroIntervention 2015



# With shadowing

Without shadowing

- Angiography
- MSCT
- IVUS
- IVUS-VH
- OCT

## **Discrepancy between IVUS and OCT**

Serruys et al . EuroIntervention 2014

| N = 19        | Difference |           |                 |        |  |
|---------------|------------|-----------|-----------------|--------|--|
|               | IVUS       | OCT       | <b>IVUS-OCT</b> | р      |  |
| Mean LA at BL | 6.32±0.84  | 7.72±1.17 | -1.40±0.60      | <0.001 |  |
| Mean LA at 1Y | 6.22±0.96  | 6.01±1.29 | 0.21±0.72       | <0.001 |  |
| Mean LA at 3Y | 6.67±1.66  | 6.09±1.67 | 0.51±0.52       | <0.001 |  |



Post-procedure









## Comparative analysis method of permanent metallic stents (XIENCE) and bioresorbable poly-L-lactic (PLLA) scaffolds (Absorb) on optical coherence tomography at baseline and follow-up

Shimpei Nakatani<sup>1</sup>, MD; Yohei Sotomi<sup>2</sup>, MD; Yuki Ishibashi<sup>1</sup>, MD, PhD; Maik J. Grundeken<sup>2</sup>, MD; Hiroki Tateishi<sup>1</sup>, MD, PhD; Erhan Tenekecioglu<sup>1</sup>, MD; Yaping Zeng<sup>1</sup>, MD, PhD; Pannipa Suwannasom<sup>1</sup>, MD; Evelyn Regar<sup>1</sup>, MD, PhD; Maria D. Radu<sup>3</sup>, MD, PhD; Lorenz Räber<sup>4</sup>, MD, PhD; Hiram Bezerra<sup>5</sup>, MD, PhD; Marco A. Costa<sup>5</sup>, MD, PhD; Peter Fitzgerald<sup>6</sup>, MD, PhD; Francesco Prati<sup>7,8</sup>, MD, PhD; Ricardo A. Costa<sup>9</sup>, MD, PhD; Jouke Dijkstra<sup>10</sup>, PhD; Takeshi Kimura<sup>11</sup>, MD, PhD; Ken Kozuma<sup>12</sup>, MD, PhD; Kengo Tanabe<sup>13</sup>, MD, PhD; Takashi Akasaka<sup>14</sup>, MD, PhD; Carlo Di Mario<sup>15</sup>, MD, PhD; Patrick W. Serruys<sup>16\*</sup>, MD, PhD; Yoshinobu Onuma<sup>1,17</sup>, MD, PhD

 Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands; 2. Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 3. Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; 4. University Hospital Bern, Bern, Switzerland; 5. Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, and Case Western Reserve University, Cleveland, OH, USA; 6. Stanford University, Stanford, CA, USA; 7. San Giovanni Addolorata Hospital, Rome, Italy; 8. Centro per la Lotta Contro L'Infarto - CLI Foundation, Rome, Italy; 9. Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Brazil; 10. Leiden University Medical Center, Leiden, The Netherlands; 11. Kyoto University, Kyoto, Japan; 12. Teikyo University School of Medicine, Tokyo, Japan; 13. Mitsui Memorial Hospital, Tokyo, Japan; 14. Wakayama Medical University, Wakayama, Japan; 15. National Institute of Health Research Cardiovascular BRU, Royal Brompton & Harefield Foundation Trust & National Heart & Lung Institute, Imperial College, London, United Kingdom; 16. International Centre for Circulatory Health, NHLI, Imperial College London, London, United Kingdom; 17. Cardialysis B.V., Rotterdam, The Netherlands

S. Nakatani and Y. Sotomi contributed equally to this work.

GUEST EDITOR: Giulio Guagliumi, MD; Cardiovascular Department, Ospedali Riuniti di Bergamo, Bergamo, Italy

- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut assessment
- Incomplete stent apposition (ISA) area
- Neointimal area





- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut assessment
- Incomplete stent apposition (ISA) area
- Neointimal area





**Xience** < **ABSORB** 

Stent area excluded (embedded) or partly included in lumen area Strut area included in lumen area

- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut
   assessment
- Incomplete stent apposition (ISA) area
- Neointimal area



Xience





Strut area not measured

Strut area measured

Absorb





Xience

- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut assessment
- Incomplete stent apposition (ISA) area
- Neointimal area



Including malapposed struts (~0.2-0.3mm<sup>2</sup>) Excluding malapposed struts (~0.41mm<sup>2</sup>)

Xience > ABSORB











Xience

- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut assessment
- Incomplete stent apposition (ISA) area
- Neointimal area





Absorb

Xience

- Stent (endoluminal) / Scaffold (abluminal) area
- Lumen area
- Total strut area
- Flow area
- Malapposed strut assessment
- Incomplete stent apposition (ISA) area
- Neointimal area





NI inside and between struts

Absorb

# Neointima: Xience < ABSORB

## Comparative analysis method of permanent metallic stents (XIENCE) and bioresorbable poly-L-lactic (PLLA) scaffolds (Absorb) on optical coherence tomography at baseline and follow-up

Shimpei Nakatani<sup>1</sup>, MD; Yohei Sotomi<sup>2</sup>, MD; Yuki Ishibashi<sup>1</sup>, MD, PhD; Maik J. Grundeken<sup>2</sup>, MD; Hiroki Tateishi<sup>1</sup>, MD, PhD; Erhan Tenekecioglu<sup>1</sup>, MD; Yaping Zeng<sup>1</sup>, MD, PhD; Pannipa Suwannasom<sup>1</sup>, MD; Evelyn Regar<sup>1</sup>, MD, PhD; Maria D. Radu<sup>3</sup>, MD, PhD; Lorenz Räber<sup>4</sup>, MD, PhD; Hiram Bezerra<sup>5</sup>, MD, PhD; Marco A. Costa<sup>5</sup>, MD, PhD; Peter Fitzgerald<sup>6</sup>, MD, PhD; Francesco Prati<sup>7,8</sup>, MD, PhD; Ricardo A. Costa<sup>9</sup>, MD, PhD; Jouke Dijkstra<sup>10</sup>, PhD; Takeshi Kimura<sup>11</sup>, MD, PhD; Ken Kozuma<sup>12</sup>, MD, PhD; Kengo Tanabe<sup>13</sup>, MD, PhD; Takashi Akasaka<sup>14</sup>, MD, PhD; Carlo Di Mario<sup>15</sup>, MD, PhD; Patrick W. Serruys<sup>16\*</sup>, MD, PhD; Yoshinobu Onuma<sup>1,17</sup>, MD, PhD

 Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands; 2. Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 3. Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; 4. University Hospital Bern, Bern, Switzerland; 5. Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, and Case Western Reserve University, Cleveland, OH, USA; 6. Stanford University, Stanford, CA, USA; 7. San Giovanni Addolorata Hospital, Rome, Italy; 8. Centro per la Lotta Contro L'Infarto - CLI Foundation, Rome, Italy; 9. Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Brazil; 10. Leiden University Medical Center, Leiden, The Netherlands; 11. Kyoto University, Kyoto, Japan; 12. Teikyo University School of Medicine, Tokyo, Japan; 13. Mitsui Memorial Hospital, Tokyo, Japan; 14. Wakayama Medical University, Wakayama, Japan; 15. National Institute of Health Research Cardiovascular BRU, Royal Brompton & Harefield Foundation Trust & National Heart & Lung Institute, Imperial College, London, United Kingdom; 16. International Centre for Circulatory Health, NHLI, Imperial College London, London, United Kingdom; 17. Cardialysis B.V., Rotterdam, The Netherlands

S. Nakatani and Y. Sotomi contributed equally to this work.

GUEST EDITOR: Giulio Guagliumi, MD; Cardiovascular Department, Ospedali Riuniti di Bergamo, Bergamo, Italy

- Stent/scaffold area (Abluminal/Endolumin al stent/scaffold area)
- Lumen area  $\bullet$
- **ISA** area  $\bullet$
- **Embedment**  $\bullet$
- **Interpolated Lumen**  $\bullet$ contour
- **Neointimal Bridge**  $\bullet$
- Strut area  $\bullet$
- Flow area ullet
- **Neointimal area**  $\bullet$



Xience





в



Abluminal

Stent / Scaffold area

#### Endoluminal stent/scaffold area

Abluminal Stent / Scaffold area



Endoluminal Stent / Scaffold area

- Stent/scaffold area
   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area



Xience

G

#### Absorb



Xience

- Stent/scaffold area (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- **ISA** area •
- Embedment  $\bullet$
- **Interpolated Lumen**  $\bullet$ contour
- **Neointimal Bridge**  $\bullet$
- Strut area  $\bullet$
- Flow area ullet
- **Neointimal area**  $\bullet$





Xience

91µm

**C.** Completely Apposed

- Stent/scaffold area
   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area



Lumen vessel contour

Absorb

**D.** Completely Apposed



- Stent/scaffold area
   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area



#### Xience

#### Absorb





without connecting bridge

#### with a potentially "thin" abluminal connecting bridge

with abluminal connecting bridge

#### with lateral connecting bridge

with bilateral connecting bridges

- Stent/scaffold area
   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area





#### Virtual measurement vs. Real measurement

- Stent/scaffold area
   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area





Flow area is comparable using the endoluminal and abluminal contours.

- Stent/scaffold area

   (Abluminal/Endolumin al stent/scaffold area)
- Lumen area
- ISA area
- Embedment
- Interpolated Lumen contour
- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area





Necitimal seafold area (Abluminal/Endolumin Necitimal area includinga) necitimal between and on-top of the struts = Abluminal stent contour (virtual or real) - Iumen (now) contour - scottotta

- Neointimal Bridge
- Strut area
- Flow area
- Neointimal area





2.0 mm



## Discrepancy between OCT and Angiography measurements

## **Comparison of BRS and DES**

Collaboration with ...

Takeshi Kimura: Kyoto university Gregg W. Stone : Cardiovascular Research Foundation Jeffrey J. Popma: Beth Israel Deaconess Medical Center Yoshinobu Onuma: Erasmus medical center Patrick W Serruys: Imperial College London and Academic researh team of Cardialysis QCA potentially underestimates MLD with BVS compared to Xience as demonstrated by OCT ...

#### Agreement between Mean LD (QCA) and Mean LD (OCT)



QCA: A single monoplane view was analyzed per lesion treated.



Relative difference of QCA versus OCT (%)



# Conclusions

- We presented a standardised OCT measurement methodology. This should be implemented in ongoing and future trials comparing the Absorb scaffolds and metallic stents.
- Using OCT and untreated segment as a method and vessel of reference, it is demonstrated that QCA is differently affected by the presence of a metallic stent or a polymeric scaffold; a fact that has a significant impact on the QCA assessment of acute gain and post-procedural MLD.

# **Thank You!**

#### Volume 11 - Number 13 - April 2016 - ISSN: 1774-024X EuroIntervention

# Asia Intervention

www.asiaintervention.org

Volume 2 - Number 1 - January 2016 - ISSN: 2426-3958

#### CORONARY INTERVENTIONS

- 1457 COmplex coronary Bifurcation lesions: RAndomized comparison of a strategy using a dedicated self-expanding biolimus-eluting stent versus a culotte strategy using everolimus-eluting stents: primary results of the COBRA trial C. Dubois, T. Adriaenssens, et al
- 1468 Significance of prior percutaneous revascularisation in patients with acute coronary syndromes: insights from the prospective PROSPECT registry A. Iñiguez, G.W. Stone, et al
- 1475 Clinical outcomes following "off-label" versus "established" indications of bioresorbable scaffolds for the treatment of coronary artery disease in a real-world population T. Miyazaki, A. Colombo, et al.
- 1479 A novel approach to treat in-stent restenosis: 6- and 12-month results using the everolimus-eluting bioresorbable vascular scaffold P. Jamshidi, F. Cuculi, et al
- 1487 Patient preference regarding assessment of clinical follow-up after percutaneous coronary intervention: the PAPAYA study M.M. Kok, M.J. Elzerman, et al.
- 1495 Does access to invasive examination and treatment influence socioeconomic differences in case fatality for patients admitted for the first time with non-ST-elevation myocardial infarction or unstable angina? S. Mårtensson, M. Osler, et al
- 1503 Virtual reality training in coronary angiography and its transfer effect to real-life catheterisation lab U.I. Jensen P. Tornvall et al.

1511 A disaster never comes alone: total ostial occlusion of the left main coronary artery with an anomalous origin P. Rodrigues, S. Torres, et al

#### INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

- 1512 Left atrial appendage occlusion with the AMPLATZER Amulet device: an expert consensus step-by-step approach A Tzikas H Omran et al
- 1522 The prognostic value of acute and chronic troponin elevation after transcatheter aortic valve implantation J.M. Sinning, N. Werner, et al
- 1530 Emergency transcatheter aortic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic stenosis C. Frerker, K.H. Kuck, et al
- 1537 First-in-man report of residual "intra-clip" regurgitation between two MitraClips treated by AMPLATZER Vascular Plug II M. Taramasso, F. Maisano, et al
- 1541 First transfermoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system T. Wengenmayer, S. Grundmann, et al
- 1545 First Lotus aortic valve-in-valve implantation to treat degenerated Mitroflow bioprostheses F. Castriota, A. Cremonesi, et al
- 1549 Direct Flow valve-in-valve implantation in a degenerated mitral bioprosthesis G Bruschi F De Marco et al

#### CORONARY INTERVENTIONS

- 19 Late angiographic and clinical outcomes of the novel BioMime<sup>™</sup> sirolimus-eluting coronary stent with ultra-thin cobalt-chromium platform and biodegradable polymer for the treatment of diseased coronary vessels: results from the prospective, multicentre meriT-2 clinical trial
- 28 Impact of chronic lung disease after percutaneous coronary intervention in Japanese patients with acute coronary syndrome
- 36 Distribution characteristics of coronary calcification and its substantial impact on stent expansion: an optical coherence tomography study
- 44 Smooth arterial healing after paclitaxel-coated balloon angioplasty for in-stent restenosis assessed by optical frequency domain imaging
- Mediastinal haematoma complicating percutaneous 48 coronary intervention via the radial artery

#### INTERVENTIONS FOR STRUCTURAL HEART DISEASE AND HEART FAILURE

- 49 Comparison of aortic annulus dimensions between Japanese and European patients undergoing transcatheter aortic valve implantation as determined by multi-detector computed tomography: results from the OCEAN-TAVI and a European single-centre cohort
- 57 Combined percutaneous transvenous mitral commissurotomy and left atrial appendage closure as an alternative to anticoagulation for rheumatic atrial fibrillation

#### EDITORIAL

- 7 Evolution and current status of interventional cardiology in India
- 10 Tailoring TAVI in Asia: insights from MSCT
- 13 Opening the shell for better stent results

#### ASIA-PACIFIC HOTLINES AT TCT 2015

- 16 Asia-Pacific Hotlines at TCT 2015: a prospective randomised trial of paclitaxel-eluting vs. everolimuseluting stents in diabetic patients with coronary artery disease (TUXEDO)
- 17 Asia-Pacific Hotlines at TCT 2015: bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease (ABSORB China Trial)
- 18 Asia-Pacific Hotlines at TCT 2015: evaluation of initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis (The CURRENT AS registry)

#### **HOW SHOULD | TREAT?**

- 58 How should | treat a patient with critical stenosis of a bifurcation of the left main coronary artery with an acute angulation between the left main artery and the left circumflex artery?
- 65 How should I treat a percutaneous posteromedial mitral periprosthetic paravalvular leak closure in a bioprosthesis with no radiopaque ring?

Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

www.eurointervention.org

CHIEF EDITORS Runlin Gao, Upendra Kaul, Takeshi Kimura, Seung-Jung Park, Huay Cheem Tan

CONSULTING EDITORS Christoph Naber, Richard Ng SENIOR CONSULTING EDITOR Patrick W. Serruys