Infrapopliteal Atherectomy: Techniques and Devices

Ravish Sachar, MD FACC
Physician-in-Chief
Cardiovascular Service Line
UNC REX Hospital
Raleigh, NC

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship
 Company

- Grant/Research Support
- Consulting Fees/Honoraria
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit
- Medtronic, Boston Scientific, Gore
- Medtronic, Boston Scientific, Spectranetics
- Contego Medical
- Contego Medical
- CardioMEMs

CLI - The Bad News

- Patients are getting older
- DM incidence and prevalence are increasing
- CLI patients are the sickest patients with multiple comorbidities
- The procedures are often long and tedious
- Sometimes you will not succeed with revascularization

CLI - The Good News

- Our toolbox of devices is expanding
- Rigorous data are being generated
- Industry has partnered with physicians to achieve these goals
- The holy grail of acute success with long term patency in BTK disease appears to be within reach

DM, ESRD, Rutherford 5

Heavy Ca+, difficult to cross

Recoil

What is the best treatment for this patient?

Atherectomy may be a good option for many patients with CLI and BTK disease due to high prevalence of diffuse calcific disease

Atherectomy for BTK lesions - Multiple

 Choices- Directional
- Orbital
- Laser
- Rotational
- Jetstream
- Rotablator
- Phoenix

Medtronic HawkOne ${ }^{\text {TM }}$, TurboHawk ${ }^{\text {TM }}$ and SilverHawk ${ }^{\text {TM }}$ Peripheral Plaque Excision Systems: Directional Atherectomy

- Can treat eccentric disease
- Avoid healthy vessel
- Ability to treat the widest range of vessel sizes

Definitive LE ($\mathrm{n}=800$) Primary Patency in Subgroups

Subgroup	Claudicants ($\mathrm{n}=743$)		CLI ($\mathrm{n}=279$)	
	$\begin{gathered} \text { Patency } \\ (\text { PSVR } \leq 2.4) \end{gathered}$	Lesion Length (cm)	$\begin{gathered} \text { Patency } \\ \text { (PGvin } 2.4 \text {) } \end{gathered}$	$\begin{aligned} & \text { Lesion } \\ & \text { Lengw }(\mathrm{cm}) \end{aligned}$
All ($\mathrm{n}=1022$)	78\%	7.5	71\%	7.2
Lesion type				
Stenoses ($\mathrm{n}=806$)	81\%	6.7	73\%	5.8
Occlusions ($\mathrm{n}=211$)	64\%	11.1	66\%	10.3
Lesion Location				
SFA ($\mathrm{n}=671$)	75\%	8.1	68\%	8.6
Popliteal ($\mathrm{n}=162$)	77\%	6.0	680	5.1
Infrapopliteal ($\mathrm{n}=189$)	90\%	5.5	78\%	6.0

12 Month Primary Patency Rates from DEFINITIVE LE based on lesion location: Claudicant Cohort

Left anterior tibial artery

Plan for Intervention:

- 6F 45cm antegrade sheath (distal tip in popliteal)
- Cross occlusion with wire/catheter techniques
- 3mm SpiderFX ${ }^{\text {m }}$ Filter deployed in the dorsalis pedis
- TurboHawk ${ }^{\text {TM }}$ SXC device for proximal and mid disease

Torque the device medially (screen left)

Medial cut

Torque the device laterally (screen right)

Lateral cut

Before and after angio's

Orbital Atherectomy

- Diamond grit coated crown
- Creates lumen greater than crossing profile

CF \approx Mass x Rotational speed ${ }^{2}$ radius of the orbit

1.9 mm crown at 80 k RPMs

1.9 mm crown at 200 k RPMs

Diamondback Crowns

Solid Micro Crown - BTK and into pedal vessels
 Flexibility of classic crown for tortuous vessels and tight bends below-the-knee and beyond Increased mass of solid crown for more effective sanding

Solid Crown 1.25 to 2.25 mm - for larger vessels

More mass allows for maximum calcium removal More diamond-coated surface area allows for
 shortest run times

Classic Crown 1.25 to 2.00 mm

The most flexible of our crown configurations
For vessel bends, ostial lesions and distal below-
 the-knee procedures

Orbital Atherectomy -Technique

- Concept: Instead of maximizing luminal gain, change the compliance of the vessel
- Use smaller crowns: lower risk of embolization
- Slow passes 1 cm/sec
- Pecking to avoid sticking or resistance
- Can use 1.25 crown through 4 French systems via pedal approach
- Liberal use of vasodilators and Viperglide
- Be careful in subintimal use
- Passes should be <30 seconds
- Follow with PTA or DEB

Orbital Atherectomy - CTO peroneal

Orbital Atherectomy: TPT and Peroneal

Calcium 360 Study

Randomized, multi-center study comparing Orbital Atherectomy System to Balloon Angioplasty alone in calcified lesions below-the-knee (BTK)

```
OAS Outperforms Balloon Angioplasty in BTK Lesions
Excellent acute performance in patients with critical limb ischemia
```

Max Balloon Pressure
Average Maximum Balloon
Pressure (atm)

Bail-Out Stenting
\% Patients Requiring Bail-out Stents

Statistically Significant
Difference in Freedom From Major Adverse
Events (MAE)**

Laser Atherectomy - Mechanisms of Action

1	2	3
Photochemical	Photothermal	Photomechanical
Breaking molecular bonds	Producing thermal energy	Creating kinetic energy
UV light pulses short bursts	As energy is absorbed, it creates molecular vibration 125ns duration, 80 pulses/sec	Vapor bubble breaks down tissue Can large embolic particles possible
Each penetrates 100 microns Result: fractured tissue bonds with small embolic particles	Water vaporizes, creating vapor bubble, rupturing cells	Technique very important, <1 cm/sec

Laser Atherectomy Technique

- Saline through pressurized system or hand injection during lasing
- Begin treatment of the stenosis with the default settings of 45 fluence and 25 frequency.
- Advance slowly through the lesion at less than 1 cm per second,
- Max 30 seconds of continuous lasing
- Additional laser passes may be performed to achieve greater debulking
- If resistance to catheter advancement is met due to calcium, or debulking is incomplete, the fluence and frequency can be increased.

DATA - LACI Phase 2

- N= 169
-97\% success
-6 month limb salvage 93\%

Jetstream Rotational Atherectomy and Aspiration System

Jetstream XC Atherectomy Catheters			
2.4/3.4		Ordering information:PV41340	
Catheter Length	$\begin{gathered} \text { Min. Introducer } \\ \text { Size } \end{gathered}$	Max. Guidewire Diameter	Tip Diameter
120 cm	7 F	$0.014^{\prime \prime}$	$\begin{aligned} & 2.4 \mathrm{~mm} \\ & 3.4 \mathrm{~mm} \end{aligned}$
2.1/3.0		Ordering infor PV3	$\begin{aligned} & \text { nation: } \\ & 1300 \end{aligned}$
Catheter Length	$\begin{aligned} & \text { Min. Introducer } \\ & \text { Size } \end{aligned}$	Max. Guidewire Diameter	Tip Diameter
135 cm	7 F	$0.014^{\prime \prime}$	2.1 mm 3.0 mm

1.85		Ordering information:PV3118F	
Catheter Length	$\begin{aligned} & \text { Min. Introducer } \\ & \text { Size } \end{aligned}$	Max. Guidewire Diameter	Tip Diameter
145 cm	7 F	0.014"	1.85 mm
1.6		Ordering information: PV3116F	
Catheter Length	Min. Introducer Size	Max. Guidewire Diameter	Tip Diameter
145 cm	7 F	$0.014^{\prime \prime}$	1.6 mm

Rotational Atherectomy

- Ability to treat different size vessels with one device
- Can treat the whole spectrum of plaque from heavily calcified to thrombus
- Central cutting feature gives uniform lumens

- Simultaneous aspiration

Rotational Atherectomy Jetstream

Atherectomy of Anterior Tibial CTO

Pre Treatment
Anterior Tibial
Calcified Ostium and 2 cm CTO
in Proximal AT

3 passes with Jestream ${ }^{\text {TM }}$ G3 ${ }^{\text {TM }}$
SF 1.85 Catheter
(Stand Alone Results)

Rotational Atherectomy Tips

- Use lubricant in infusion bag to enhance aspiration function (Rotoglide)
- If concern for thrombus, add tPa to infusion bag
- First do blades down, followed by blades up
- If patient has pain, go to blades down mode
- Slow - 1 cm/sec

Phoenix - Volcano

- Front Cutting with Archimedes screw
- OTW
- Continuous removal of plaque
- 5 French

Infrapopliteal Atherectomy + DCB

- Tibial vessels should be ideally suited for combination therapy
- Long, diffuse, calcified disease
- Small vessels - higher restenosis
- Non-randomized studies suggest benefit of DCB in BTK lesions
- No randomized data to suggest that either DCB or combination DCB + Atherectomy beneficial
- Cost Considerations
- NEED MORE DATA!!

Summary

- All devices work, and there are niche areas for each
- Directional atherectomy appears to have excellent one year outcomes in both patency and efficacy
- Rotational devices excellent to "debulk" calcium and modify plaque to prepare for adjunctive therapy
- Important to develop expertise and use the ones that you are most comfortable with
- Each unique patient requires a 'tailored" approach specific to the anatomy and desired outcome

Thank You!

BTK Atherectomy - Relative Benefits Based on Anatomy

	Directional	Orbital	Laser	Rotational - Jetstream	Rotational Rotablator	
TPT	$X X X$		$X X$	$X X$	$X X$	X
Prox Tibial	$X X X$		$X X$	$X X$	$X X$	X
Distal/Pedal	X		$X X X$	$X X X$	X	$X X$
Bifurcation	$X X X$		X	$X X$	X	X
Focal	$X X X$		$X X$	$X X$	$X X$	X
Long Diffuse		$X X$	$X X X$	$X X$	X	
Heavy Ca++	X	$X X X$	X	$X X$	$X X X$	
Long, Heavy Ca++	X	$X X X$	X	$X X$	$X X X$	
CTO	X	$X X$	$X X$	$X X$	X	
Thrombus				$X X X$	$X X X$	

Particulate Size Distribution

5 studies, 37 experiments

(Carbon blocks; Thermal injury porcine coronary artery; Diseased cadaver peripheral arteries)

Mean particle size: 2.3 um ($\pm .1 \mathrm{um}$) $(99.95 \% \mathrm{Cl})$ 93.14% < Red Blood Cell Diameter (99\% CI)
99.3% < Capillary Diameter (99\% CI)
Rotablator Average Particle Distribution

Effective in calcium

12 Month Primary Patency in Calcified Lesions from DEFINITIVE LE

