Infrapopliteal Atherectomy: Techniques and Devices

Ravish Sachar, MD FACC

Physician-in-Chief Cardiovascular Service Line UNC REX Hospital Raleigh, NC

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- Medtronic, Boston Scientific, Gore
- Medtronic, Boston Scientific, Spectranetics
- Contego Medical
- Contego Medical
- CardioMEMs

CLI - The Bad News

- Patients are getting older
- DM incidence and prevalence are increasing
- CLI patients are the sickest patients with multiple comorbidities
- The procedures are often long and tedious
- Sometimes you will not succeed with revascularization

CLI - The Good News

- Our toolbox of devices is expanding
- Rigorous data are being generated
- Industry has partnered with physicians to achieve these goals
- The holy grail of acute success with long term patency in BTK disease appears to be within reach

DM, ESRD, Rutherford 5

Heavy Ca+, difficult to cross

What is the best treatment for this patient?

Atherectomy may be a good option for many patients with CLI and BTK disease due to high prevalence of diffuse calcific disease

Atherectomy for BTK lesions – Multiple Choices

Directional

- Orbital
- Laser
- Rotational
 - Jetstream
 - Rotablator
 - Phoenix

Medtronic HawkOne[™], TurboHawk[™] and SilverHawk[™] Peripheral Plaque Excision Systems: Directional Atherectomy

- Can treat eccentric disease
- Avoid healthy vessel
- Ability to treat the widest range of vessel sizes

	Common Femoral
	5 mm - 8 mm
A /	and the second second
11	
IN T	
11/1	1
11	Superficial
11	Femoral (SFA)
A	4 mm - 7 mm
1	
1 11	
AVI	
121	Popliteal
LSI.	3 mm - 6 mm
19110	
N	Tibial Peroneal Trunk
	3 mm - 4 mm
	Autorica Tible
	Anterior Tiblai
	2 1111 - 4 1111
	Peroneal
1117	2 mm - 3 mm
IV/	Posterior Tibial
11 11	2 mm - 3 mm
1	Dorsalis Pedis
AIN	1.5 mm - 2 mm
2933	1

Definitive LE (n=800) Primary Patency in Subgroups

Subgroup	Claudicants (n=743)		CLI (n=279)				
	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)	Patency (PSVR ≤ 2.4)	Lesion Length (cm)			
All (n=1022)	78%	7.5	71%	7.2			
Lesion type							
Stenoses (n=806)	81%	6.7	73%	5.8			
Occlusions (n=211)	64%	11.1	66%	10.3			
Lesion Location							
SFA (n=671)	75%	8.1	68%	8.6			
Popliteal (n=162)	77%	6.0	68%	5.4			
Infrapopliteal (n=189)	90%	5.5	78%	6.0			

12 Month Primary Patency Rates from DEFINITIVE LE based on lesion location: Claudicant Cohort

Left anterior tibial artery

Plan for Intervention:

- 6F 45cm antegrade sheath (distal tip in popliteal)
- Cross occlusion with wire/catheter techniques
- 3mm SpiderFX[™] Filter deployed in the dorsalis pedis
- TurboHawk[™] SXC device for proximal and mid disease

Torque the device medially (screen left)

Medial cut

Torque the device laterally (screen right)

Lateral cut

Before and after angio's

Orbital Atherectomy

- Diamond grit coated crown
- Creates lumen greater than crossing profile

 $\frac{CF \approx Mass \ x \ Rotational \ speed^2}{radius \ of \ the \ orbit}$

1.9mm crown at 80k RPMs

1.9mm crown at 200k RPMs

Diamondback Crowns

Solid Micro Crown – BTK and into pedal vessels

Flexibility of classic crown for tortuous vessels and tight bends below-the-knee and beyond Increased mass of solid crown for more effective sanding

Solid Crown 1.25 to 2.25 mm – for larger vessels

More mass allows for maximum calcium removal More diamond-coated surface area allows for shortest run times

Classic Crown 1.25 to 2.00 mm

The most flexible of our crown configurations For vessel bends, ostial lesions and distal belowthe-knee procedures

Orbital Atherectomy – Technique

- Concept: Instead of maximizing luminal gain, change the compliance of the vessel
- Use smaller crowns: lower risk of embolization
- Slow passes 1 cm/sec
- Pecking to avoid sticking or resistance
- Can use 1.25 crown through 4 French systems via pedal approach
- Liberal use of vasodilators and Viperglide
- Be careful in subintimal use
- Passes should be <30 seconds</p>
- Follow with PTA or DEB

Orbital Atherectomy – CTO peroneal

Orbital Atherectomy: TPT and Peroneal

Calcium 360 Study

Randomized, multi-center study comparing Orbital Atherectomy System to Balloon Angioplasty alone in calcified lesions below-the-knee (BTK)

OAS Outperforms Balloon Angioplasty in BTK Lesions

Excellent acute performance in patients with critical limb ischemia

Max Balloon Pressure

Average Maximum Balloon Pressure (atm)

Bail-Out Stenting

% Patients Requiring Bail-out Stents

Statistically Significant Difference in Freedom From Major Adverse Events (MAE)**

Laser Atherectomy - Mechanisms of Action

Photochemical	Photothermal	3Photomechanical
Breaking molecular bonds	Producing thermal energy	Creating kinetic energy
UV light pulses short bursts 125ns duration, 80 pulses/sec Each penetrates 100 microns Result: fractured tissue bonds with small embolic particles	As energy is absorbed, it creates molecular vibration Heats intracellular water Water vaporizes, creating vapor bubble, rupturing cells	Vapor bubble breaks down tissue Can large embolic particles possible Technique very important, <1 cm/sec

Laser Atherectomy Technique

- Saline through pressurized system or hand injection during lasing
- Begin treatment of the stenosis with the default settings of 45 fluence and 25 frequency.
- Advance slowly through the lesion at less than 1 cm per second,
- Max 30 seconds of continuous lasing
- Additional laser passes may be performed to achieve greater debulking
- If resistance to catheter advancement is met due to calcium, or debulking is incomplete, the fluence and frequency can be increased.

DATA – LACI Phase 2

■N= 169

97% success

6 month limb salvage 93%

Jetstream Rotational Atherectomy and Aspiration System

2.4/3.4		Ordering information: PV41340		
Catheter Length	Min. Introducer Size	Max. Guidewire Diameter	Tip Diameter	
120 cm 7 F		0.014"	2.4 mm	
			3.4 mm	
2.1/3.0)	Ordering inform PV3	3.4 mm nation: 1 3 0 0	
2.1/3.0 Catheter Length) Min. Introducer Size	Ordering inform P V 3 Max. Guidewire Diameter	3.4 mm nation: 1 3 0 0 Tip Diamete	

Jetstream SC Atherectomy Catheters

1.85		Ordering information: P V 3 1 1 8 F			
Catheter Length	Min. Introducer Size	Max. Guidewire Diameter	Tip Diameter		
145 cm	7 F	0.014"	1.85 mm		
			Ordering information: PV3116F		
1.6		Ordering inform PV3	nation: 116 F		
1.6 Catheter Length	Min. Introducer Size	Ordering inform P V 3 Max. Guidewire Diameter	nation: 116F Tip Diameter		

Rotational Atherectomy

Ability to treat different size vessels with one device

- Can treat the whole spectrum of plaque from heavily calcified to thrombus
- Central cutting feature gives uniform lumens

Simultaneous aspiration

Rotational Atherectomy -Jetstream

Atherectomy of Anterior Tibial CTO

3 passes with Jestream[™] G3[™] SF 1.85 Catheter (Stand Alone Results)

Pre Treatment

Anterior Tibial Calcified Ostium and 2 cm CTO in Proximal AT

Distal Runoff of AT Showing 2 cm CTO

Rotational Atherectomy Tips

- Use lubricant in infusion bag to enhance aspiration function (Rotoglide)
- If concern for thrombus, add tPa to infusion bag
- First do blades down, followed by blades up
- If patient has pain, go to blades down mode

Slow – 1 cm/sec

Phoenix - Volcano

 Front Cutting with Archimedes screw

- Continuous removal of plaque
- 5 French

Infrapopliteal Atherectomy + DCB

- Tibial vessels should be ideally suited for combination therapy
- Long, diffuse, calcified disease
- Small vessels higher restenosis
- Non-randomized studies suggest benefit of DCB in BTK lesions
- No randomized data to suggest that either DCB or combination DCB + Atherectomy beneficial
- Cost Considerations
- NEED MORE DATA!!

Summary

- All devices work, and there are niche areas for each
- Directional atherectomy appears to have excellent one year outcomes in both patency and efficacy
- Rotational devices excellent to "debulk" calcium and modify plaque to prepare for adjunctive therapy
- Important to develop expertise and use the ones that you are most comfortable with
- Each unique patient requires a 'tailored' approach specific to the anatomy and desired outcome

Thank You!

BTK Atherectomy – Relative Benefits Based on Anatomy

	Directional	Orbital	Laser	Rotational - Jetstream	Rotational -Rotablator
ТРТ	XXX	XX	XX	XX	Х
Prox Tibial	XXX	XA	XX	XX	Х
Distal/Pedal	Х	XXX	XXX	Х	XXX
Bifurcation	XXX	X	XX	Х	Х
Focal	XXX	XX	XX	XX	Х
Long Diffuse	\checkmark	XX	XXX	XX	Х
Heavy Ca++	Х	XXX 🚺	X	XX	XXX
Long, Heavy Ca++	Х	XXX	X	XX	XXX
СТО	Х	XX	XX	XX	\mathbf{X}
Thrombus			XXX	XXX	

Particulate Size Distribution

5 studies, 37 experiments

(Carbon blocks; Thermal injury porcine coronary artery; Diseased cadaver peripheral arteries)

Mean particle size: 2.3 um (± .1 um) (99.95% Cl) 93.14% < Red Blood Cell Diameter (99% Cl) 99.3% < Capillary Diameter (99% Cl)

Rotablator Average Particle Distribution

Effective in calcium

12 Month Primary Patency in Calcified Lesions from DEFINITIVE LE

