EPC Capture Stent: A promising solution amongst the DAPT controversy?

Roxana Mehran MD, FACC, FSCAI, FAHA, FESC
Professor of Medicine (Cardiology),
Population Health Science and Policy
The Icahn School of Medicine at Mount Sinai
TCTAP 2016
Seoul, Korea

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below. These relationships may lead to bias in my presentation.

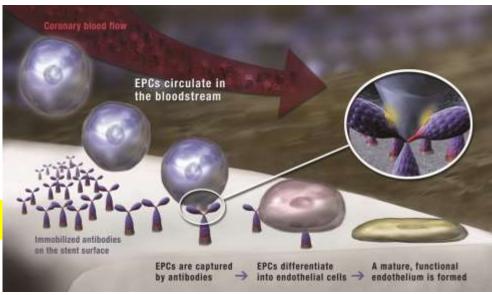
Affiliation/Financial Relationship

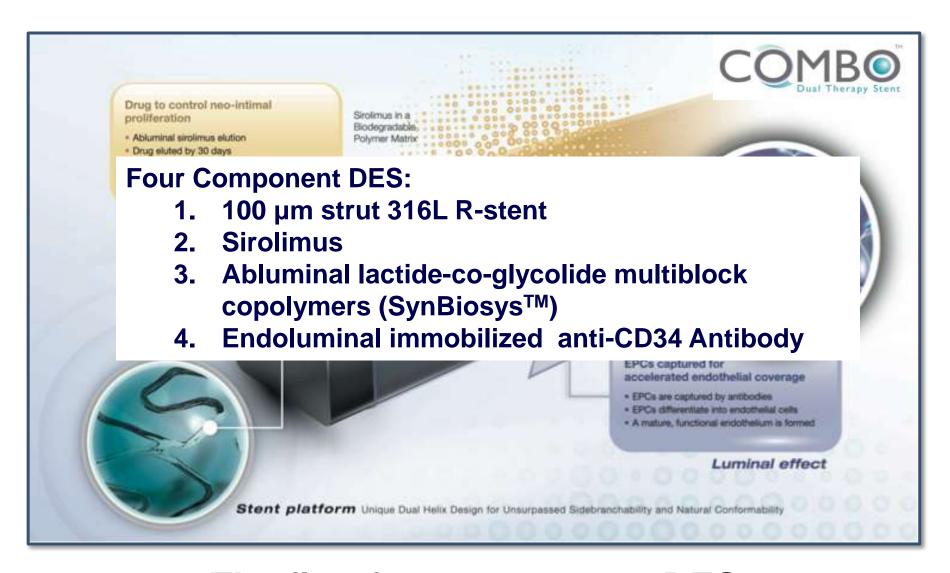
- Grant/Research Support (Institutional)
- Advisory Board
- Consulting Fees/Honoraria

Company

- The Medicines Co., AZ, BMS, Lilly/Daiichi Sankyo
- Janssen (J+J),
- Janssen (J+J), Maya Medical,

Areas for Improvement with DES in 2016


- First 30 day safety
- Early DAPT interruption
- Duration of DAPT
- Thrombotic lesions (ACS, STEMI)
- Long term healing



Components of Currently Available DES

Dual Therapy Stent Scaffold Platform Anti-proliferative Drug Polymer 90 days (biodegradable) EPC Capture (pro-healing)

Luminal EPC Capture

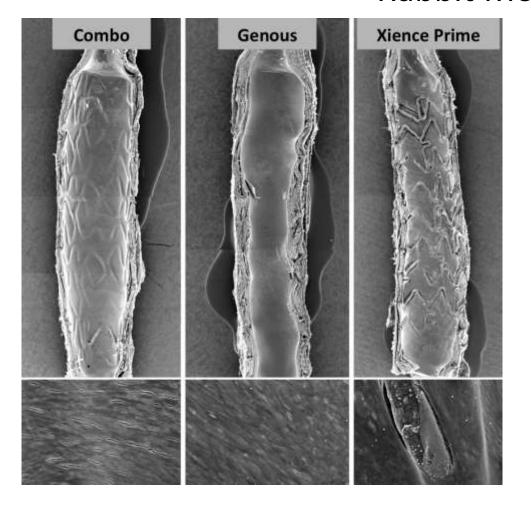
The first four component DES

PERFORMANCE OBJECTIVES: COMBO Stent

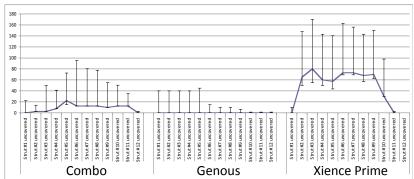
Short term:

Rapid Endothelial Coverage, allowing shorter DAPT

Mid term:


- Control of Neointimal Proliferation
 - Low rates of Restenosis and Target Lesion Revascularization, comparable to contemporary DES

Long term:


- Stable healing, durable results
 - Stable TLR rate over Time
 - No/Low rate of Late Stent Thrombosis
 - Reduced late neoatherosclerosis

Scanning Electron Microscopy at 28 days in an Atherosclerotic Rabbit Model

Distribution of uncovered struts (by each strut) as assessed by SEM

Lines represent median values, upper bars represent median plus 75^{th} percentile, and lower bars represent median minus 25^{th} percentile.

% Endothelial coverage by SEM

Endothelial coverage (%)	Combo (n=6)	Genous (n=6)	Xience Prime (n=6)	p value
Above struts	83.3 (34.1)	98.3 (20.6)	52.7 (48.0)	0.025
Between struts	93.3 (5.9)	87.5 (20.9)	92.0 (13.7)	0.714

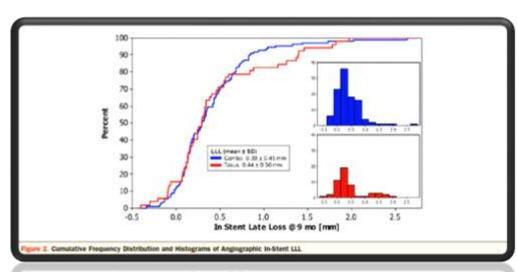
Endothelial coverage at 28 days above struts by SEM was highest in Genous, followed by Combo, and lowest in Xience Prime. Endothelial coverage between struts was nearly identical.

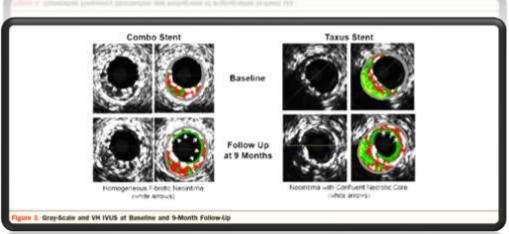
REMEDEE Combo Stent First-In-Man

2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

150. 4. 40. 4. 1976 150M 1638-4748/100 06 http://www.escidegitz/file/jooks/16/5/6/5/6

The REMEDEE Trial

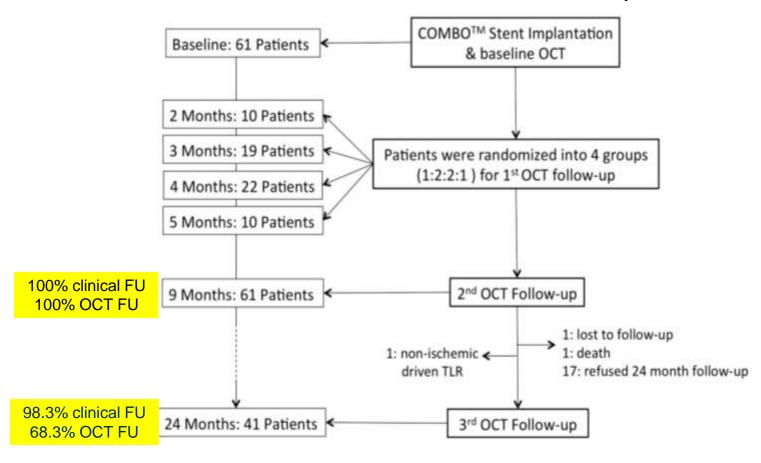

A Randomized Comparison of a Combination Sirolimus-Eluting Endothelial Progenitor Cell Capture Stent With a Paclitaxel-Eluting Stent


Michael Haude, MD, PhD, Stephen W, L. Lee, MD,†
Stephen G, Worthley, MBBS, PhD,‡ Sigmand Silber, MD, PhD,§
Stefan Verheye, MD, PhD, Sandra Erbs, MD,¶ Mohd Ali Rosli, MD,‡
Roberto Botelho, MD, PhD,** Ian Meredith, MBBS, PhD,†† Kui Hian Sim, MBBS,‡‡
Pieter R, Stella, MD, PhD,§§ Huay-Cheem Tan, MBBS, || Robert Whitbourn, MBBS,¶¶
Sukumaran Thambar, MBBS,## Alexandre Abizaid, MD, PhD,*** Tian Hai Koh, MBBS,†††
Peter Den Heijer, MD, PhD,‡‡‡ Helen Parise, ScD,§§§ Ecaterina Cristea, MD,§§§
Akiko Maehara, MD,§§§ Roxana Mehran, MD§§§

News, Munich, and Leipzig, Germany; Hong Kong, Hong Kong, Adelaide, Melbourne, and Newcastle, Australia; Antwerp, Belgium; Kuala Lumpur and Sarawak, Malaysia; Minas Gerais and São Paulo, Brazil; Utrecht and Breda, the Netherlands; Singapore, Singapore, and New York, New York

- 183 pts
- 2:1 RCT Combo vs. Taxus Liberte
- 1° endpoint: non-inf 9 mos LLL met

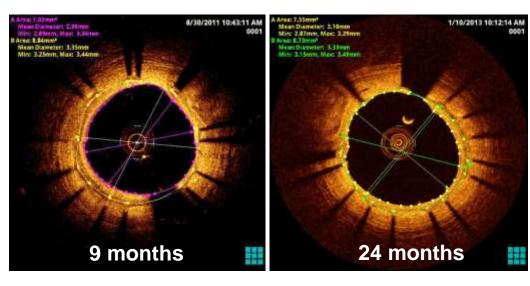
bio-Engineered Sicrity angreys,

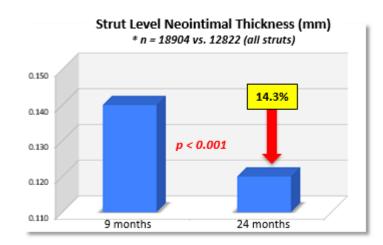


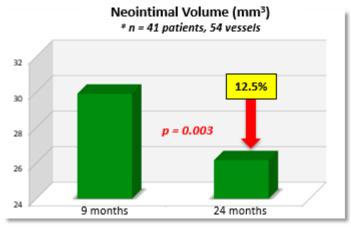
21" CardioVascular Summit TCTAP 2016

EGO COMBO

Trial Study Design

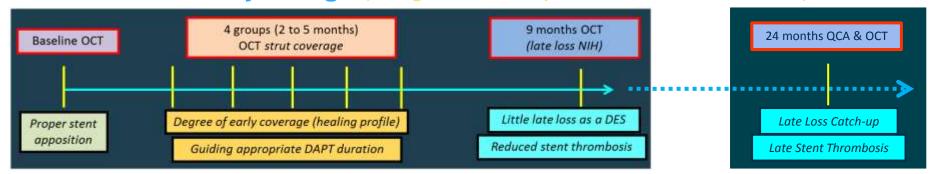

Patient randomization and OCT follow-up


EGO COMBO


OCT documented neo-intimal regression from 9 to 24 month

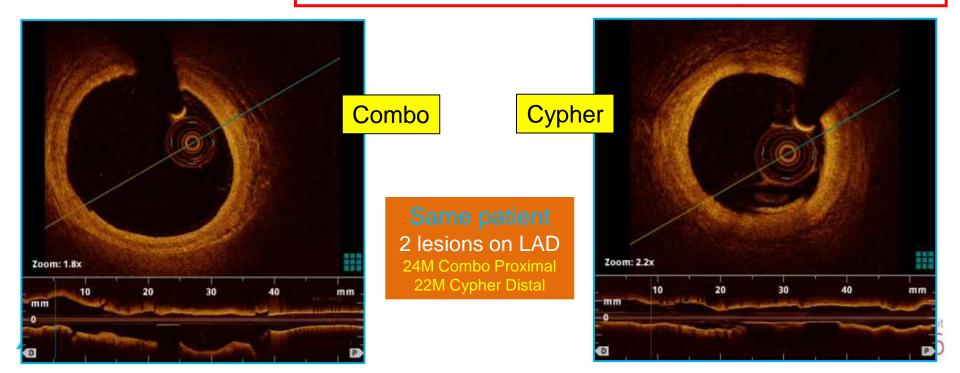
<u>Increased</u> Lumen Area and <u>decreased</u> Neointimal Area from 9 to 24 months

- Results are consistent with NI maturation and organization
- No neoatherosclerosis



Median [IQR] 29.91 [22.13, 43.22] vs. 26,17 [19.64, 35.81]

EGO-COMBO Study Design (Longitudinal Sequential OCT FUs 0-24M)


With core lab. adjudication, the dual therapy COMBO Stent is the first DES ever with a healing profile established, and appears to be a novel DES with durable outcomes.

Abluminal sirolimus drug coating

- Optimal neointimal suppression
- Low neointimal thickness
- Low neointimal volume
- Low in-stent % plaque volume
- Durable patent artery without ISR

Luminal antibody coating

- Excellent healing without neo-atherosclerosis
- Plaque regression rather than progression
- No sun-flowering or late positive remodeling
- No even a single micro-thrombus detected
- Stable pro-healing benefits

Initial Combo Clinical Experience

Shedding light on three aspects of healing:

– EARLY: Strut "coverage"

REMEDEE*, EGO COMBO**, REMEDEE OCT***

OCT @ 2 - 9 months

MID TERM: Restenosis

REMEDEE*, EGO COMBO**, REMEDEE OCT***

- NI formation & Late Loss
 - OCT @ 2 9 months
- QCA @ 9 months
- NI Characterization @ 9 months
 - OCT: Low Intensity Tissue & Micro Vessels in NI
 - IVUS-VH: Necrotic Core in NI
- LONG TERM: Biostability
 OCT****
 - Clinical FU out to 48 months
 - OCT FU out to 24 months

REMEDEE****, EGO COMBO**, REMEDEE

REMEDEE Registry*****

* M. Haude, EuroPCR 2012

** S. Lee, TCTAP 2014

*** U. Landmesser, TCT 2012

**** R. Mehran, EuroPCR 2015

***** R. de Winter, TCT 2015

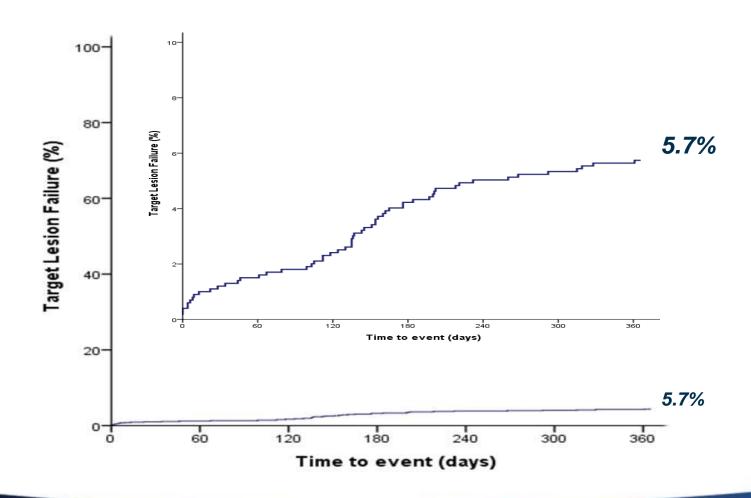
One Year Results of the REMEDEE Registry

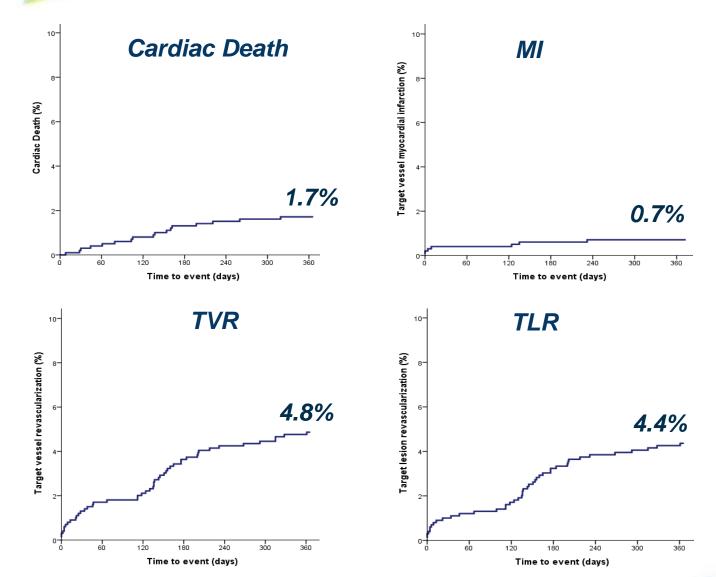
Clinical Outcomes After Deployment of the Abluminal Sirolimus-Coated Bioengineered Stent (COMBO) in a Multicenter, Prospective Postmarket Registry

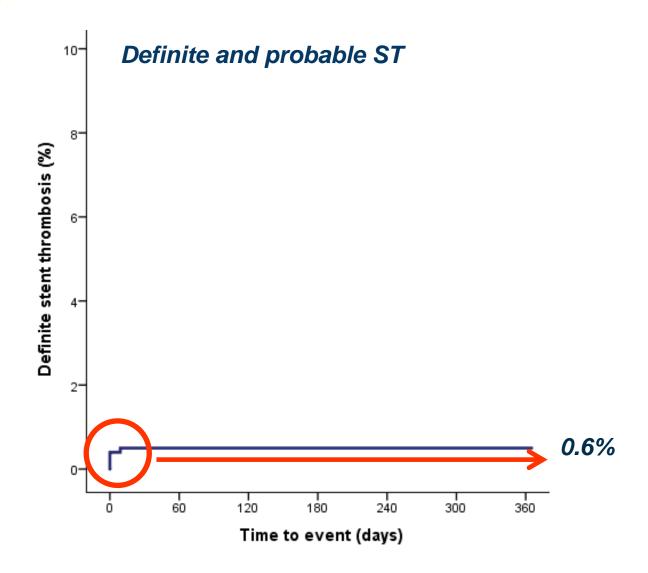
Robbert J de Winter, MD PhD FESC

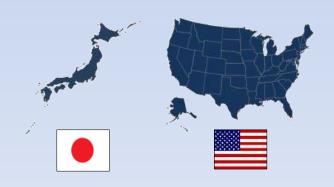
On behalf of the REMEDEE Registry Investigators

REMEDEE registry Lesion Characteristics


Multivessel disease (>1 vessel, >70%) 21.1%		AHA/ACC lesion type		
, = 1000	,	Α	16.4%	
Treated lesions (n=1511)		B1	24.9%	
Left main	1.3%	B2	37.5%	
LAD	50.6%	С	21.1% } 50%	
LCx	20.2%			
RCA Bypass graft	26.1% 1.8%	TIMI flow pre-procedure		
2,6400 8.4.0		0	14.5%	
Number of vessels treated		1	4.5%	
One vessel PCI	89.5%	2	9.8%	
Multivessel PCI	10.5%	3	71.3%	


REMEDEE registry Primary endpoint: Target Lesion Failure


Secondary endpoints


Stent thrombosis

HARMONEE

Harmonized Assessment by Randomized, Multi-center Study of OrbusNEich's COMBO StEnt

HARMONEE Study Organization

Sponsor:

OrbusNeich Medical

Global Pls:

- Dr. Shigeru Saito
- Dr. Mitchell Krucoff

National Coordinators:

- USA: Dr. Roxana Mehran
- Japan: Dr. Shigeru Nakamura

Steering Committee Chair:

Dr. David Kong

Site Management:

- Japan: CMIC
- USA: DCRI

Clinical Event Adjudication:

DCRI (Japan-USA)

Data Safety Monitoring:

DCRI (Japan-USA)

FFR Core Laboratory:

UH, Case Western Reserve
 Dr. Hiram Bezerra, Director

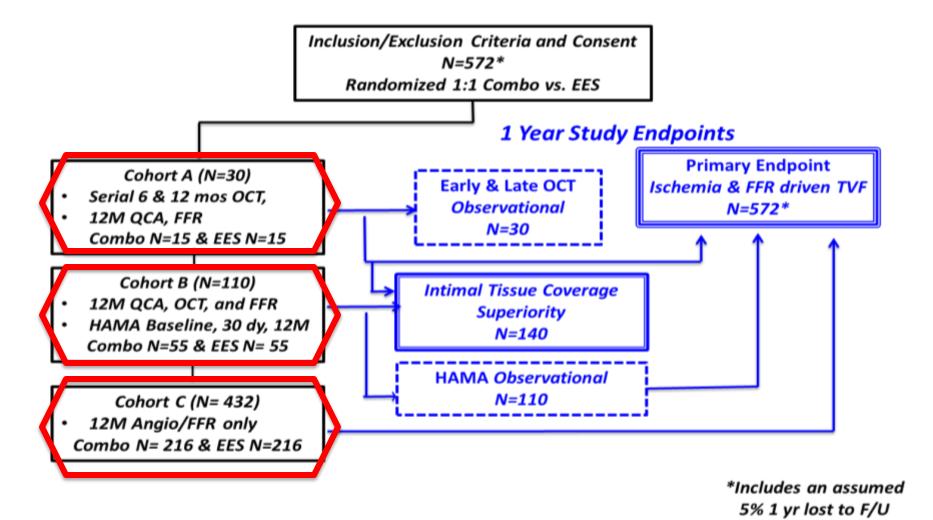
Angiographic Core Laboratory:

- CRF

Dr. Philippe Genereux, Director

OCT Core Laboratory:

- CRF


Dr. Akiko Maehara, Director

HAMA Core Laboratory:

Celerion Switzerland AG

HARMONEE Study Design

HARMONEE Study Endpoints

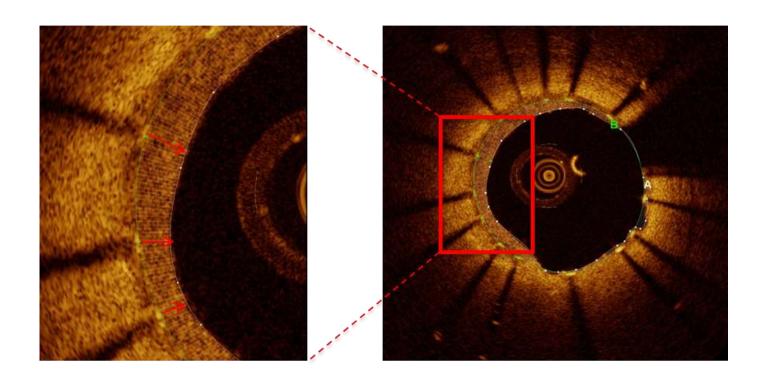
Primary endpoint (clinical effectiveness):

- Non-inferior TVF* at 1 year (including FFR) vs. state-ofthe-art second-generation DES
- Superior TVF vs imputed BMS

*Clinically driven target vessel failure [TVF], defined as cardiac death, target-vessel MI, or ischemiadriven TVR by percutaneous or surgical methods.

HARMONEE Study Endpoints

Secondary (mechanistic effectiveness)


Superior healthy level of intimal tissue strut coverage at 1 year vs. state-of-theart second-generation DES quantified by OCT

Other Pre-Specified

- Death, myocardial infarction (MI), and stent thrombosis at 1 year
- Angiographic late lumen loss at 1 year vs. EES
- Safety of Combo:
 - Change in HAMA plasma levels at 30-day and 1-year follow-ups compared with baseline
 - OCT evaluation of intracoronary thrombosis and stent malapposition at 1 year
- Serial observation of both Combo and EES at 6 and 12 months in the same patients

OCT Measurement: 1 year healthy endothelium EPC Mechanistic Surrogate

- Independent, Blinded Core Laboratory (CRF)
- Per strut, per frame, and per patient analysis
- Combo superiority to EES

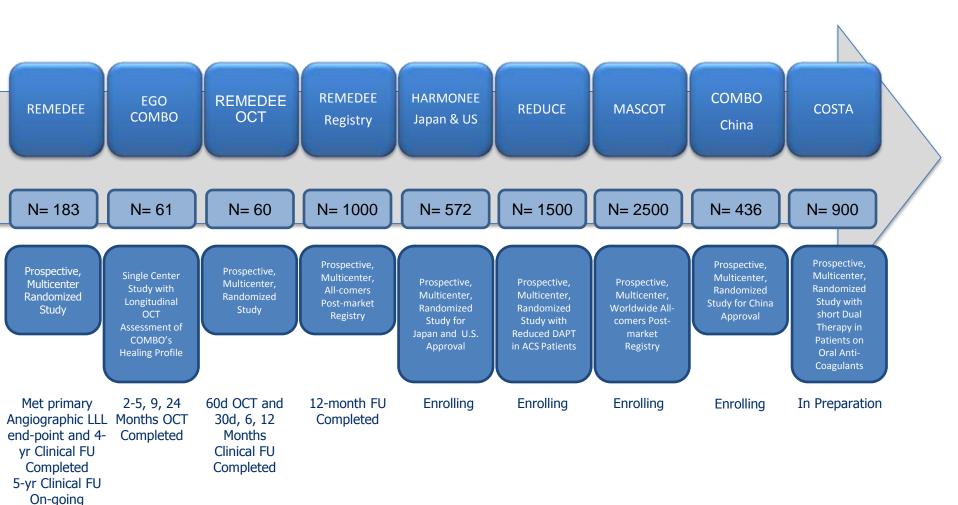
Leaving "occulo-stenotic" PCI Behind

Fractional Flow Reserve (FFR):

- All patients at 1 year
- All "re-looks"
- Core Lab quality assurance

21" CardioVascular Summit TCTAP 2016

Japan-USA HARMONEE Study


- First 4-component DES
- First biologic EPC capture technology
- First Japan-USA pivotal coronary DES study
- First physiologic & anatomic DES evaluation
- First "non-occulo-stenotic reflex" invasive F/U study

Enrolled 544/572 patients!

Combo Stent Clinical Trial Program

Combo Stent Conclusions

- DES technology still evolving: Focus on "Active Healing"
- EPC capture technology: Novel "4th component" to enhance speed and completeness of endothelial healing
- Combo stent has been shown to be effective in the control of neointimal proliferation
 - Low clinical event rates out to 4 years
 - Mechanistic clinical studies have demonstrated a unique the "healing profile"

Combo Stent Conclusions

- Japan-USA HARMONEE Study: On-going trial assesses clinical and mechanistic outcomes of Combo vs. EES
 - TVF 1 year
 - OCT 6 months & 1 year
 - FFR: for all repeat revascularization
- Large-scale Registries: "Real-world" experience
 - REMEDEE Registry at 12-mo FU (n=1000)
 - MACOT Registry enrollment complete (n=2500)
- Benefit of Combo stent technology in High Risk RCTs
 - REDUCE: Reduced DAPT in ACS Patients; 3-mo versus 12-mo
 - COSTA: short Dual Therapy in Patients on Oral Anti-Coagulants
- An ongoing comprehensive clinical trial program with 7000+ patient pool designed to validate the clinical performance of Combo

Thank You

