DES Evolution

Bioresorbable Polymer DES as a Standard in Trials and Clinical Practice

David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org

Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship	Company
Grant/Research Support	Abbott Vascular, Boston Scientific, Medinol Medtronic CardioVascular, Biotronik, Thoratec
Consulting Fees/Honoraria	Boston Scientific Corporation, Medtronic CardioVascular
Major Stock Shareholder/Equity	None
Royalty Income	None
Ownership/Founder	None
Intellectual Property Rights	None
Other Financial Benefit	None

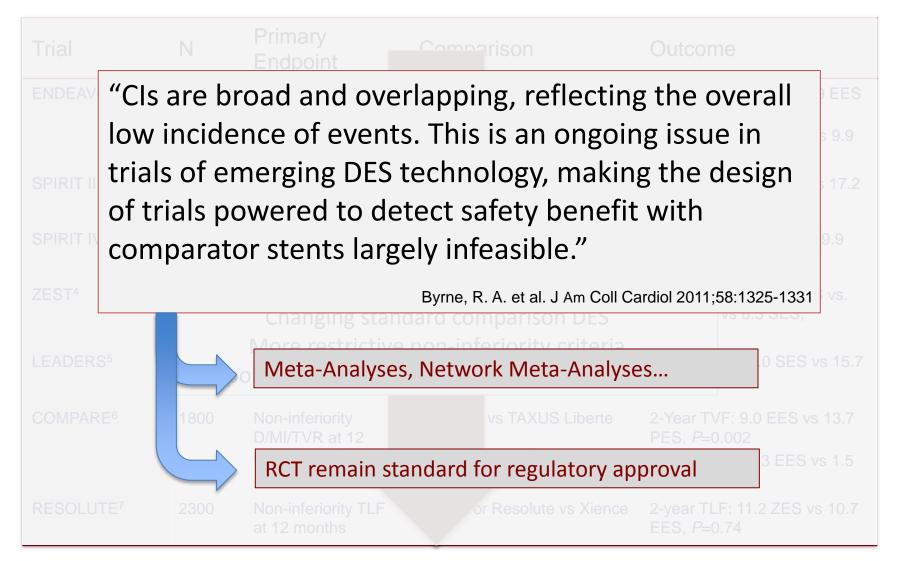
What are the requirements of DES in 2016?

Orug-eluting stent trials: too much non-inferiority, too little progress?

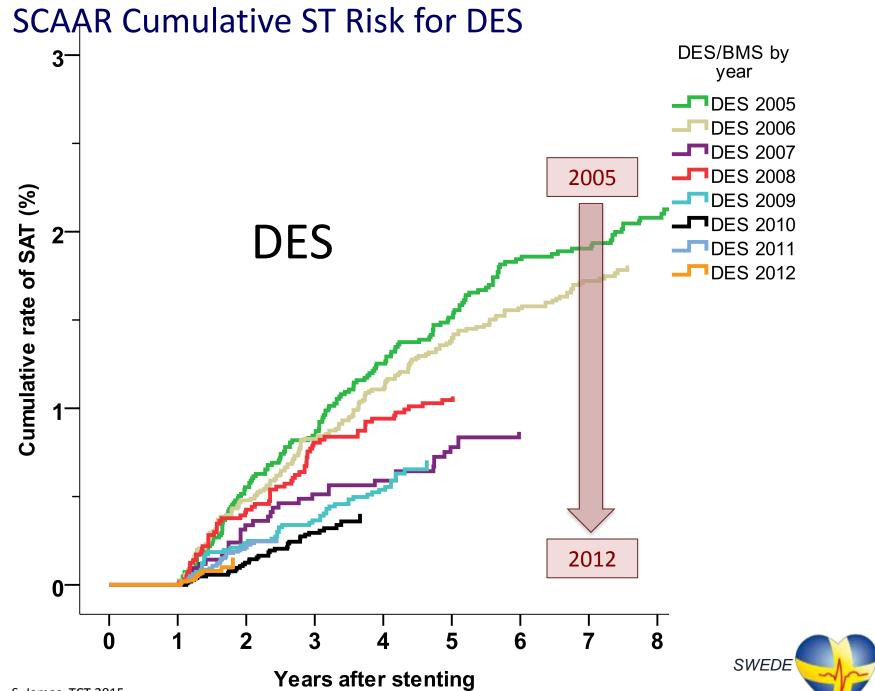
Cofoty

What are our expectations for a new generation DES?

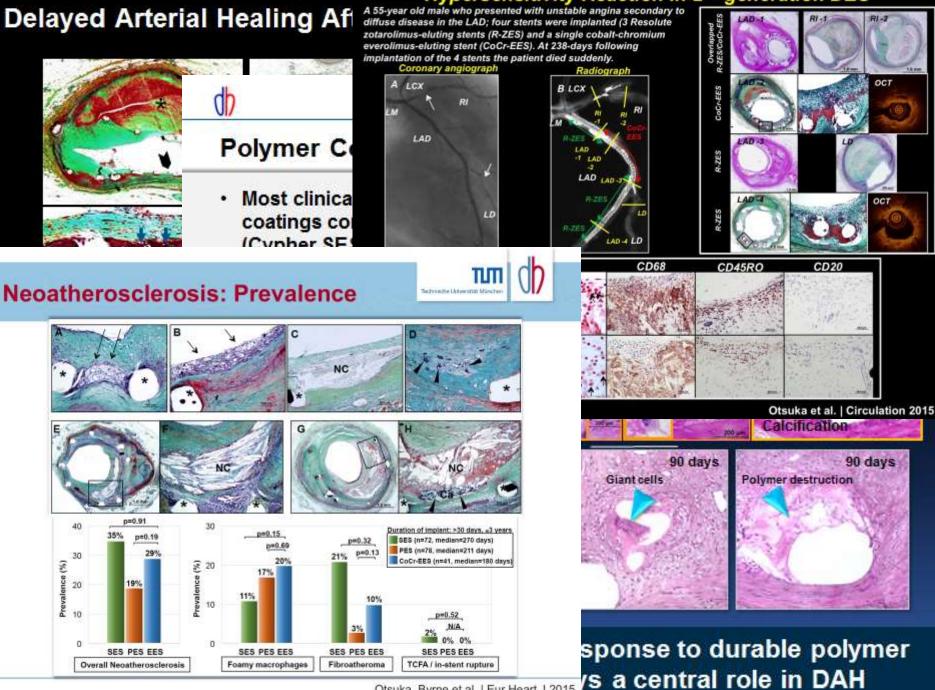
- Is 'as good as' good enough? Is at least 50% as good acceptable?


– Must a 'new, but similar' DES demonstrate similar head-to-head outcomes or is inference good enough?

– Are preclinical (endothelialization) and mechanistic (OCT, vasomotion) data sufficient to support a new DES with limited human experience?


Stent delivery system

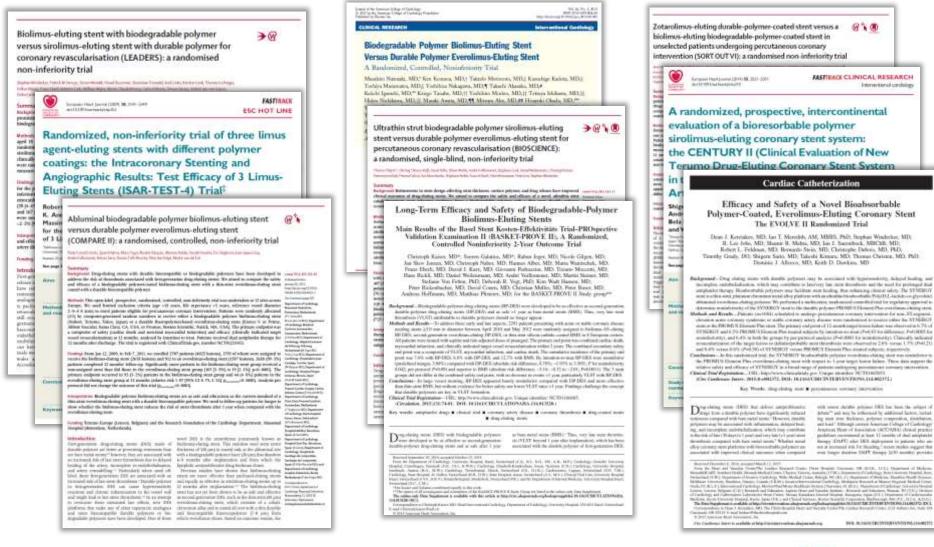
Evolution of DES Randomized Trials



¹Leon et al. JACC Intv 2010; ²Stone TCT 2010; ³Stone TCT 2010; ⁴Park JAMA 2009, ⁵Windecker et al. Lancet 2008; ⁶Kedhi et al. Lancet 2009; Smits TCT 2010; ⁷Serruys NEJM 2010

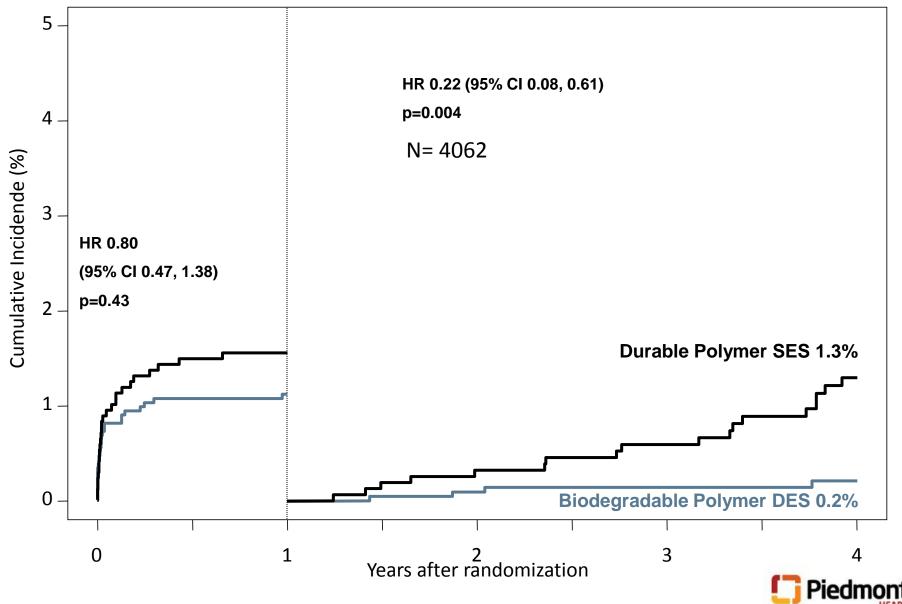
S. James, TCT 2015

Hypersensitivity Reaction in 2nd generation DES


Otsuka, Byrne et al. | Eur Heart J 2015

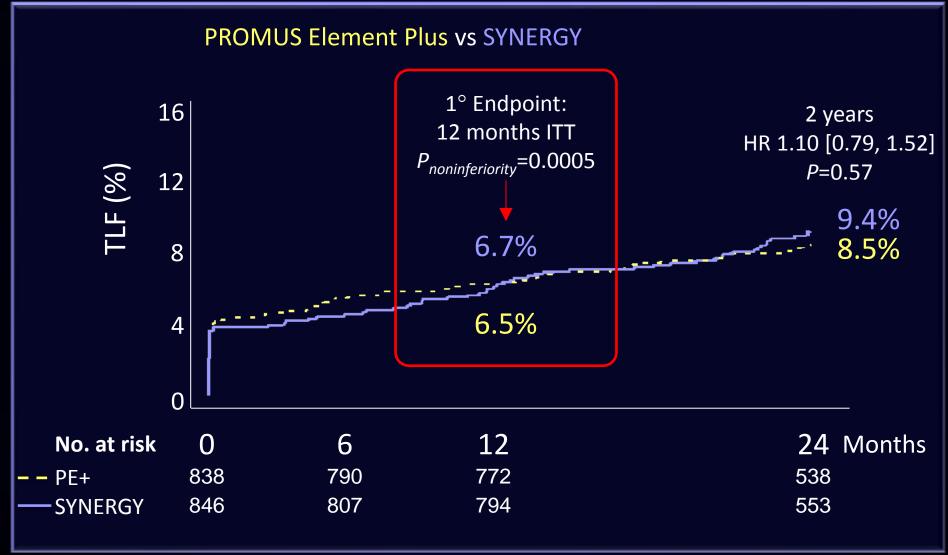
Evolution of DES

- Newer generation durable polymer DES (DP DES) significantly improve safety and efficacy outcomes compared with both BMS and early generation DP DES
 - Represent the current standard of care for PCI in all patient and lesion subsets
- Newer generation DP DES in higher risk patients remains associated with higher clinical failure
- Permanent polymer coatings of newer generation DES have been associated with chronic inflammation, hypersensitivity, and neoatherosclerosis translating to late restenosis and thrombosis
 - SPIRIT III, COMPARE: 2-3% annualized TLF rate
 - ISAR TEST 4: 2-fold progression of neointimal hyperplasia with EES
- Biodegradable polymer DES (BP DES) were designed to overcome limitations of DP DES and represent a safe and effective alternative to unselected PCI patients



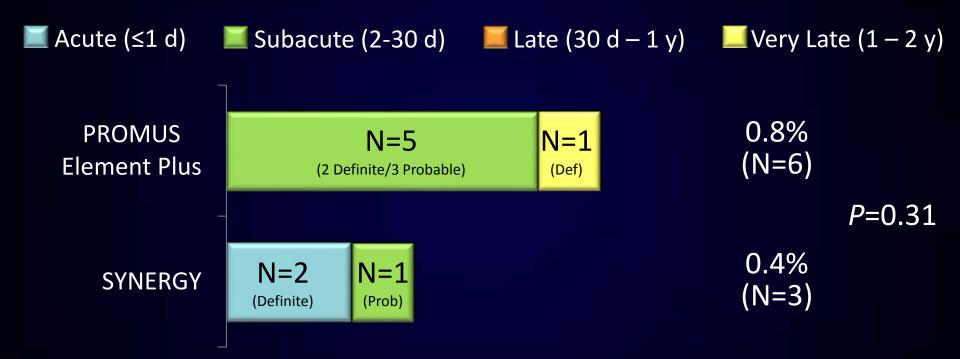
Comparable 1 Year Outcomes for BP DES and PP DES

C Piedmont


Definite Stent Thrombosis Pooled Analysis of ISAR TEST 3, ISAR TEST 4 and LEADERS Trials

Stefanini, Byrne et al, Eur Heart J 2012

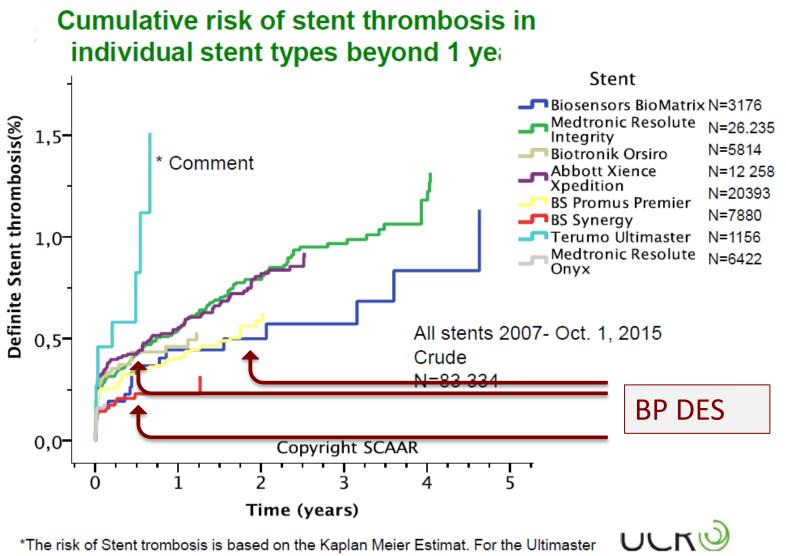
EVOLVE II TLF at 1 and 2 years



Kereiakes ACC 2016

ITT Population; Patients who did not receive a study stent were censored at 1 year; KM Event Rates; log-rank P values

Stent Thrombosis at 2 years Definite/Probable : ITT Population



No definite ST in the SYNERGY arm after 24 hours

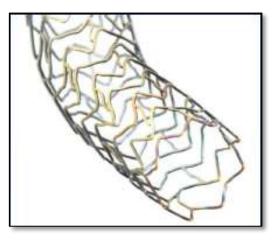
Kereiakes ACC 2016

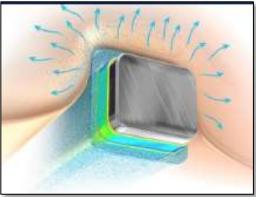
SCAAR Registry Definite ST for Contemporary DES

*The risk of Stent trombosis is based on the Kaplan Meier Estimat. For the Ultimaster stent only 9 stent thromboses was reported in 1156 stents. Eight of these in one hospital.

BIOTRONIK Osiro Clinical Trial Program

Stent platform: PRO-Kinetic Energy

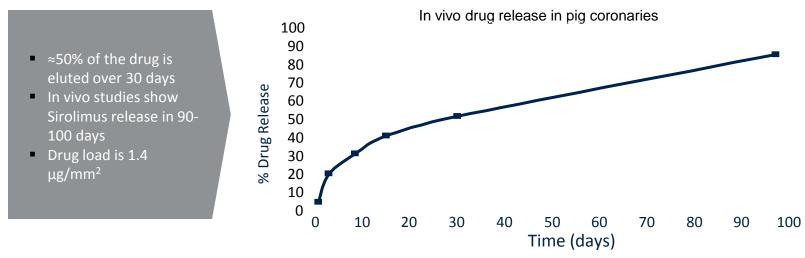

- Cobalt Chromium, L-605
- 60µm struts, double helix design

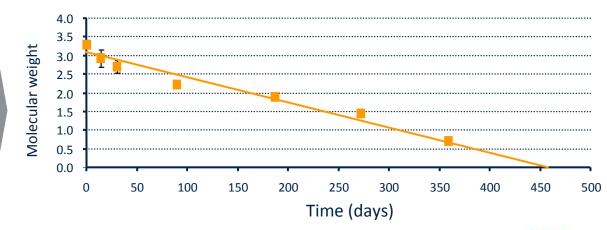

Active coating: BIOlute (Conformal)

- PLLA* bioabsorbable polymer matrix
- Sirolimus (Drug load is 1.4µg/mm²⁾

Passive coating: PROBIO

 Silicon carbide** layer that encapsulates the stent surface, reducing ion release and prevent corrosive process




BIOTRONIK Osiro BP DES

Sirolimus Elution as Measured on Orsiro DES

Degradation Profile of Orsiro's BIOlute Polymer Coating

- BIOlute degrades over time, leaving BMS for best longterm clinical outcome
- Durable polymers can lead to chronic inflammatory responses

BIOTRONIK Osiro BP DES

Dural Polymer Coa			orbable oated Stent	Bioabsorbable Scaffold			
Abbott/Boston Medtronic		Boston	BIOTRONIK	Abbott			
Xience/Promus ¹ CoCr/PtCr-EES	Resolute ¹ CoNi-ZES	Synergy ¹ PtCr-EES	Orsiro ^{1*} CoCr-SES	Absorb ² PLLA-EES			
		Strut thic	kness				
81 µm	91 µm	74 µm	60 µm	150 μm			
Polymer coating							
Circumferential 7-8 µm/side	Circumferential 6 µm/side	Abluminal 4 µm	Circumferential 4-7µm/side	Circumferential 3 µm/side			

Sources: 1: GG Stefanini, M Taniwaki, S Windecker, Coronary stents: novel development, Heart doi:10.1136/heartjnl-2012-303522; 2: IT Meredith, Scientific symposium, TCT 2013

Osiro Clinical Trial Program

	BIOFLOW-I	BIOFLOW-II	BIOFLOW-III	BIOFLOW-IV	BIOSCIENCE	
Study type	 Prospective Multi-center Non-randomized Single-arm 	 Prospective Multi-center Randomized (2:1 vs Xience Prime) 	 Prospective Multi-center Non-randomized Single-arm Open label 	 Prospective Multi-center Randomized (2:1 vs Xience Prime/Expedition) 	 Prospective Multi-center Randomized (1:1 vs Xience Prime) 	
Primary Endpoint	Late lumen loss at 9 months	Late lumen loss at 9 months	Target lesion failure at 12 monthsTarget vessel failure at 12 months		Target lesion failure at 12 months	
Number of subjects enrolled	30	452 (Orsiro: 298, Xience Prime: 154)	1,356	555 planned (Orsiro: 370, Xience: 185)	2,060	
Lesion criteria	 Single, <i>de novo</i> lesion Native artery ≥50% and ≤100% 	 1 or 2 <i>de novo</i> lesions Separate arteries ≥50% and ≤100% ≤ 26 mm RVD ≥ 2.25 mm and ≤ 4.0 mm 	All-comers	 1 or 2 <i>de novo</i> lesions Separate arteries ≥50% and ≤100% ≤ 26 mm RVD ≥ 2.5 mm and ≤ 3.75 mm 	All-comers	
Follow-up	 1 month and 1,2, 3 yrs: clinical 4 and 9 months: clinical and angio 4 and 9 months: IVUS (15 pts) 	 1, 6, 12 mos and 2-5 yrs: clinical 9 months: angio 9 months: OCT and IVUS (60 pts) 	• 6, 12 mos and 3,5 yrs: clinical	• 1, 6, 12 mos and 2-5 yrs: clinical	• 1, 6, 12 mos and 2-5 yrs: clinical	
Status (enrollment period)	Primary endpoint complete (Enrollment July 2009)	Primary endpoint complete (Enroll July '11–Mar '12)	Primary endpoint complete (Enroll Aug '11 - Mar '12)	Expected completion Q12015	Primary endpoint complete (Aug '11 - Mar 12)	

Total Orsiro pts in these studies = 3,117

Total Xience pts in these studies = 1,395

.... **BIOFLOW-II**

- Multi-center RCT comparing Orsiro and Xience Prime
- Primary endpoint: LLL at 9 mos. Secondary endpoint: TLF

TLF components

OCT and IVUS imaging results

In-Stent Late Loss at 9 Months (mm)

Orsiro	p-value*	Xience Prime	
0.10 ± 0.32	<0.001	0.11 ± 0.29	

4.7

Secondary clinical endpoint results

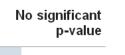
Results

8.0

6.5

10 9

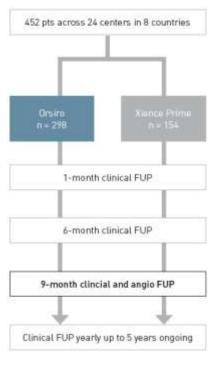
8


7

6

5

%

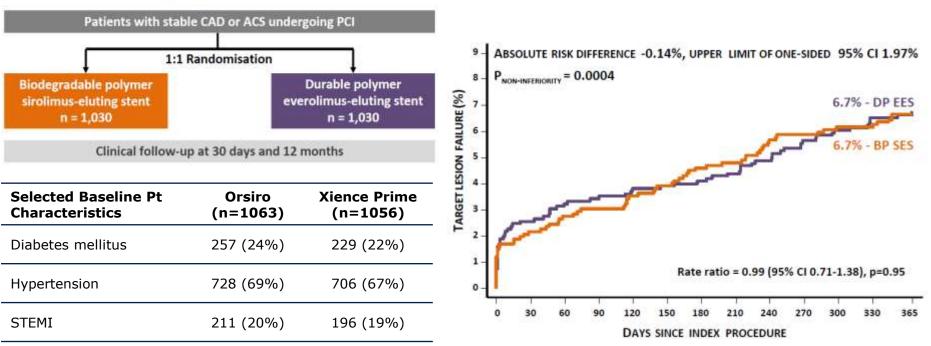

TLF rate and stent thrombosis out to 12 month follow-up

— Orsiro

— Xience Prime

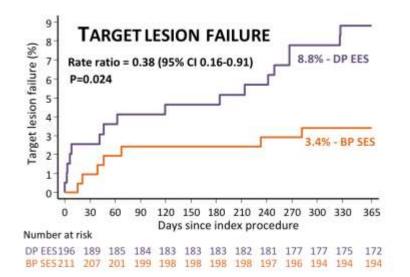
No stent

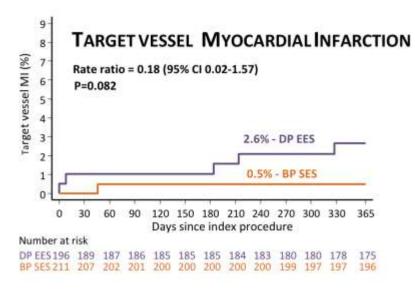
R O										thrombosis		Strut Coverage	
- 4 0	-		ľ				2.7 2.6	3.5		events reported	Orsiro	Xience Prime	p-value
3 2		_								through 12 months	36 lesions 8388 struts	19 lesions 3991 struts	
1	-		┣		-	0.7 0.7					98.3%	97.5%	0.042
0									0.0 0.0	0.0 0.0		•	
			TLI	F		Cardiac death	Target vessel MI	TLR	CABG	Stent			

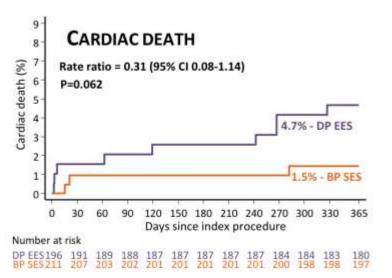

Thrombosis

Windecker TCT 2013; Circ Cardiovasc Intervent 2015

- Prospective, multi-center, "more comers" trial comparing Orsiro to Xience Prime
- Primary endpoint: Target Lesion Failure (TLF) at 12 mos.

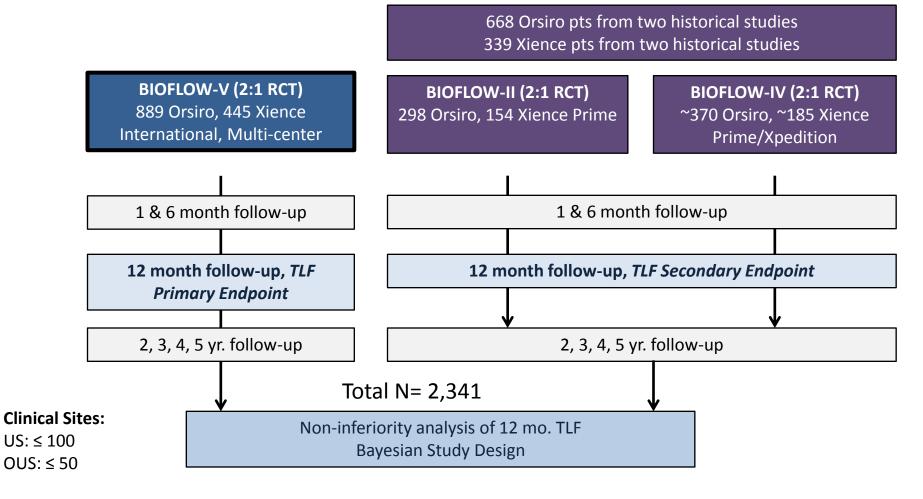

TRIAL DESIGN




Pooled Analysis of BIOFLOW II and BIOSCIENCE Trials

-	BP SES	DP EES		Risk ratio (95% CI)
Target lesion failure				
Bioflow-II	19/298	12/154		0.82 (0.41-1.64)
Bioscience	69/1,063	70/1,056		0.98 (0.71-1.35)
Overall			\diamond	0.95 (0.71-1.27)
Cardiac death				
Bioflow-II	2/298	1/154	┥╋	1.03 (0.09-11.31)
Bioscience	20/1,063	22/1,056		0.90 (0.50-1.64)
Overall			\diamond	0.91 (0.51-1.63)
Target vessel myocardia	l infarction			
Bioflow-II	8/298	4/154		1.03 (0.32-3.38)
Bioscience	30/1,063	31/1,056		0.96 (0.59-1.58)
Overall			\diamond	0.97 (0.62-1.53)
Target lesion revascular	isation			
Bioflow-II	10/298	7/154	— — —	0.74 (0.29-1.90)
Bioscience	35/1,063	23/1,056	-	1.51 (0.90-2.54)
Overall			\sim	1.18 (0.61-2.30)
			0.25 0.5 1 2 4	
Pilgrim, Windecker, et al. Lancet 2014		<u>a</u> _	Risk ratio (95% CI)	
Filgriff, Willuecker, et al. Lancet 2014		1	Favours BP SES Favours DP	EES

BIOSCIENCE STEMI Subgroup Analysis


SORT OUT VII

N= 2,525

BIOFLOW-V Study Design

Enrollment began April 2015, completed April 2016

PIs: D Kandzari, J. Koolen

Forthcoming Osiro DES Trials

BIOFLOW V US/Europe	N=2,341; Osiro vs Xience	Enrollment complete April 2016
BIOFLOW IV Japan	N=555; Osiro vs Xience	TCT 2016
BIOFLOW VI China	N=440; Osiro vs Xience	Currently enrolling
BIORESORT Netherlands/Twente	N=3,530; Osiro vs Synergy vs Resolute	TCT 2016

Iterative Development of DES *Opportunities For Improvement*

- We are realizing the best outcomes with DES than ever before reported
- > But....evolution is inherent to interventional cardiology
- As newer DES are introduced, adoption will be driven more by intuition than scientific evidence as the opportunity to refine outcomes is increasingly difficult
- Still, opportunities remain to develop novel drug, polymer and stent delivery systems with selected attributes of each that confer incremental clinical and performance benefits above existing technologies
- Rather than focus on device approval through non-inferiority alone, bioresorbable polymer DES technologies enable us to address existing challenges, test strategy or a new advantage, and demonstrate value that informs dilemmas in existing practice

