

zapus

OCT&Pressure Wire-Guided Comprehensive Assessment for Coronary Artery Disease

Vulnerability Assessment Using OCT

Evelyn Regar Thoraxcenter Erasmus Medical Center Rotterdam, The Netherlands

The institution Erasmus Medical Center receives research support from St. Jude Medical & consultancy fees from Boston Scientific.

Erasmus MC 2 afuns

Plaque Prone to Rupture

Inflamed, thin-cap fibroatheroma (TCFA)

- **Lipid-rich**, atheromatous core
- Thin fibrous cap, with
- Macrophage and lymphocyte infiltration
- Decreased SMC content
- Expansive remodeling

OCT can visualize different plaque components: in vitro

	Sens.	Spec.
Fibrous	71-79%	97-98%
Fibro-calcific	95-96%	97%
Lipid-rich	90-94 %	<i>90-92%</i>

Overall agreement k = 0.83 to 0.84

Yabushita et al. Circulation.2002:106:1640-1645.

Erasmus MC

OCT can visualize lipid rich-plaque.

modified from Kume et al. Am J Cardiol 2006;97:1172-117

Erasmus MC

OCT can visualize lipid rich-plaque.

modified from Kume et al. Am J Cardiol 2006;97:1172-117

Erasmus MC

Erasmus MC 2 afms

- OCT can visualize lipid rich-plaque.
- OCT can visualize the thickness of a fibrous cap.

OCT can visualize lipid rich-plaque.

OCT can quantify the thickness of a fibrous cap (automated).

Fig. 1 Segmentation framework. (a) Cartoon depicting the region of interest (ROI, dashed lines) encompassing the fibrous cap. (b) OCT image of an *in vivo* human coronary artery, in Cartesian coordinates, with the resulting luminal (cyan line) and abluminal (magenta line) segmentation contours. (c) ROI in polar coordinates, with the luminal contour (cyan line). (d) Gradient image I_{G} . (e) Transformed cost image C_T . (f) Cumulated cost C, with the optimal path (magenta line). (g) Resulting abluminal segmentation contour.

Fully automated segmentation of fibrous cap thickness

Zahnd G et al. presented at MICCAI 2014

Erasmus MC

zaping

OCT can visualize lipid rich-plaque.

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.

Kume at al. Am J Cardiol 2006;97:1713–171

Erasmus MC

zafino

OCT can visualize lipid rich-plaque.

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.

Kι Kume at al. Am J Cardiol 2006;97:1713–171

Erasmus MC

zafino

OCT can visualize lipid rich-plaque.

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.

OCT can diagnose thin cap fibroatheroma (TCFA)

	TCFA (n=30)	Non-TCFA (n=47)	P value
IVUS findings			
Reference site			
EEM CSA, mm ²	14.7 ± 6.2	12.6±3.9	0.064
Lumen CSA, mm ²	6.4±3.0	5.4±1.9	0.094
Plaque plus media CSA, mm ²	8.3±3.8	7.2±2.5	0.108
Lesion site			
EEM CSA, mm ²	15.3±6.1	13.4±4.2	0.110
Lumen CSA, mm ²	4.4±2.2	4.0±1.6	0.332
Plaque plus media CSA, mm ²	10.9 ± 4.3	9.4±3.2	0.086
Plaque burden, %	71±7	70±7	0.636
Remodeling index	1.06 ± 0.11	1.08±0.15	0.463
Positive remodeling, n (%)	15 (50%)	29 (62%)	0.157
OCT findings			
TCFA detected by OCT	27 (90%)		
Thickness of the fibrous cap, µm	46±32		

Kume at al.XXX 2009. In press

Erasmus MC

OCT can visualize lipid rich-plaque.

Erasmus MC

zaping

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.

OCT can diagnose thin cap fibroatheroma (TCFA)

	TCFA (n=30)	Non-TCFA (n=47)	P value
IVUS findings			
Reference site			
EEM CSA, mm ²	14.7±6.2	12.6±3.9	0.064
Lumen CSA, mm ²	6.4±3.0	5.4±1.9	0.094
Plaque plus media CSA, mm ²	8.3±3.8	7.2±2.5	0.108
Lesion site			
EEM CSA, mm ²	1.5.3±6.1	13.4±4.2	0.110
Lumen CSA, mm ²	4.4±2.2	470±1.6	0.332
Plaque plus media CSA, mm ²	10.9±4.3	4±3.2	0.086
Plaque burden, %	71±7	1 <u>1</u> <u>1</u>	0.636
Remodeling index	1.06 ± 0.11	1.08 ± 0.15	0.463
Positive remodeling, n (%)	15 (50%)	29 (62%)	0.157
OCT findings			
TCFA detected by OCT	27 (90%)		
Thickness of the fibrous cap, μm	46±32		

Kume at al. 2009

OCT can visualize lipid rich-plaque.

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.
- OCT can diagnose thin cap fibroatheroma (TCFA)
- OCT can visualize plaque changes over time

Erasmus MC

zafing

Van Ditzhuijzen, Regar et al. Netherlands Heart J, 2011.

OCT can visualize lipid rich-plaque.

Erasmus MC

zafino

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.
- OCT can diagnose thin cap fibroatheroma (TCFA)
- OCT can visualize plaque changes over time

OCT can visualize lipid rich-plaque.

Erasmus Mo

- OCT can visualize a thin fibrous cap.
- OCT can differentiate thrombus.
- OCT can diagnose thin cap fibroatheroma (TCFA)
- OCT can visualize plaque rupture & thrombosis in vivo

Symptomatic Plaque Rupture: STEMI

Erasmus MC

Asymptomatic Witnessed Plaque Rupture

Gonzalo, Regar et al. JACC Imaging. 2011

Asymptomatic Witnessed Plaque Rupture

Plaque rupture

Gonzalo, Regar et al. JACC Imaging. 2011

Empty cavity

Gonzalo, Regar et al. JACC Imaging. 2011

Asymptomatic Witnessed Plaque Rupture

Thrombus, filling rupture defect Gonzalo, Regar et al. JACC Imaging. 2011

Asymptomatic Witnessed Plaque Rupture

Gonzalo N et al. JACC Imaging 2011

Symptomatic Witnessed Plaque Rupture Periprocedural

Case Example: 64y, male, stable angina CCS 3

Pre

Direct stenting 3.5mm/12mm;18atm Vasospasm, haziness, slow flow

Postdilation 4.0mm/8mm;18atm

Post PCI: Troponin 53ng/L (ULN: 13ng/L)

Erasmus MC

Symptomatic Witnessed Plaque Rupture

Erasmus MC Zafung

Pre-intervention imaging: lipid-rich culprit lesion

Symptomatic Witnessed Plaque Rupture Periprocedural

Erasmus MC

zafing

Post stent: Strut malapposition proximal Tissue protrusion within stent

Symptomatic Witnessed Plaque Rupture Periprocedural

Erasmus MC Zafung

Postdilation: Disruption of lipid-rich plaque

Symptomatic Witnessed Plaque Rupture

Erasmus MC Zafung

Postdilation: Disruption of lipid-rich plaque

Symptomatic Witnessed Plaque Rupture Periprocedural

Erasmus MC

Plaque Prone to Rupture

Inflamed, thin-cap fibroatheroma (TCFA)

- Lipid-rich, atheromatous core
- Thin fibrous cap, with

Macrophage and lymphocyte infiltration

Erasmus MC

Erasmus MC 2 afms

OCT can visualize the pathologic substrate in patients

J Am Coll Cardiol 2012; 59(12):1058–72

OCT can visualize the pathologic substrate in patients

Standardization of nomenclature & definitions of IV OCT findings

Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies

A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

Guillermo J. Tearney, MD, PHD, Writing Committee Co-Chair,* Evelyn Regar, MD, PHD, Writing Committee Co-Chair, Takashi Akasaka, MD, Writing Committee Co-Chair, ‡ Tom Adriaenssens, MD, Peter Barlis, MD, Hirarn G. Bezerra, MD, Brett Bouma, PHD, Nico Bruining, PHD, Jin-man Cho, MD, PHD, Saqib Chowdhary, PHD, Marco A, Costa, MD, PHD, Ranil de Silva, MD, PHD, Jouke Dijkstra, PHD, Carlo Di Mario, MD, PHD, Darius Dudeck, MD, PHD, Erlin Falk, MD, PHD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD, Nieves Gonzalo, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Niels R. Holm, MD, Yasuhiro Honda, MD, Fumiaki Ikeno, MD, Masanori Kawasaki, MD, Janusz Kochman, MD, PHD, Lukasz Koltowski, MD, Takashi Kubo, MD, PHD, Teruyoshi Kume, MD, Hiroyuki Kyono, MD, Cheung Chi Simon Lam, MD, Guy Lamouche, PHD, David P. Lee, MD, Martin B. Leon, MD, Akiko Maehara, MD, Olivia Manfrini, MD, Gary S. Mintz, MD, Kyiouchi Mizuno, MD, Marie-angéle Morel, MD, Seemantini Nadkarni, PHD, Hiroyuki Okura, MD, Hiromasa Otake, MD, Arkadiusz Pietrasik, MD, Francesco Prati, MD, Lorenz Räber, MD, Maria D. Radu, MD, Johannes Rieber, MD, Maria Riga, MD, Andrew Rollins, PHD, Mireille Rosenberg, PHD, Vasile Sirbu, MD, Patrick W. J. C. Serruys, MD, PHD, Kenei Shimada, MD, Toshiro Shinke, MD, Junya Shite, MD, Ehot Siegel, MD, Shinjo Sonada, MD, Melissa Suter, PHD, Shigeho Takarada, MD, PHD, Atsushi Tanaka, MD, PHD, Mitsuyasu Terashima, MD, Thim Troels, MD, PHD, Shiro Uemura, MD, PHD, Giovanni J. Ughi, PHD, Heleen M.M. van Beusekom, PHD, Antonius F.W. van der Steen, PHD, Gerrit-Ann van Es, PHD, Gijs van Soest, PHD, Renu Virmani, MD, Sergio Waxman, MD, Neil J. Weissman, MD, Giora Weisz, MD

Erasmus

Boston, Massachusetts; Rotterdam, the Netherlands; and Wakayama, Japan

Fibroatheroma (A)

lesion with an OCT-delineated fibrous cap and a lipid pool

OCT thin cap fibroatheroma (C)

an OCT-delineated necrotic core with an overlying fibrous cap where the min. thickness is less than a predetermined threshold

Fibrous cap

is a tissue layer, which is often signal-rich, overlying a lipid pool, necrotic core, or calcium.

International Working Group on OCT Standardization and Validation; JACC. 2012

Erasmus MC

Is this good enough?

OCT Pifalls Moderate positive predictive value!

Erasmus MC

Accuracy of OCT, Grayscale IVUS, and Their Combination for the Diagnosis of Coronary TCFA

An Ex Vivo Validation Study

Kenichi Fujii, MD,* Hiroyuki Hao, MD,† Masahiko Shibuya, MD,* Takahiro Imanaka, MD,* Masashi Fukunaga, MD,* Kojiro Miki, MD,* Hiroto Tamaru, MD,* Hisashi Sawada, MD,* Yoshiro Naito, MD,* Mitsumasa Ohyanagi, MD,‡ Seiichi Hirota, MD,† Tohru Masuyama, MD*

K. and J. M. M. M. Market Ros, M. M. Managara, S. Market M. M. Takama Sounds, M. Managara, Phys. Rev. D 50, 101 (1994).

Fuji K et al. JACC Cardiovasc Img 2015 Apr;8(4):451-60

Fuji K et al. JACC Cardiovasc Img 2015 Apr;8(4):451-60

Fuji K et al. JACC Cardiovasc Img 2015 Apr;8(4):451-60

ост	Fibrous tissue area			
	Thick 160-910 μm	Medium-thin 90-140 μm		Thin <i>30-60 μm</i>
	38	9		13
	25 Thick fibrous c	ap 11	Thin fibro	ous cap
Histo	8 Fibro-calcific	11	Fibro-cal	cific
	5 Fibrous	to 2 main limitations of OCT imaging. First, the penetration depth of OCT is limited to 1 to 2 mm, which does not allow the accurate detection of signal-poor areas possibly repre- senting lipid pools or calcium behind fibrous tissue. This		

depth of OCT is limited to 1 to 2 mm, which does not allow the accurate detection of signal-poor areas possibly representing lipid pools or calcium behind fibrous tissue. This may generate false-positive fibrous plaques, false-negative fibrocalcific plaques, and false-negative thick-cap fibroatheromas. Second, OCT analysis often confuses the presence of lipid pools with that of calcium deposits, or vice versa. As

Manfrini et al: Am J Cardiol 2006;98

OCT Pitfalls Artefacts: Macrophage scattering

The region of thickened intima appears as a TCFA

due to strong scattering & shadowing by macrophages.

Van Soest G et al, J Biomed Opt 2010

Incidence of artefacts in clinical setting

	# observations		
Category	Pullbacks	Sections	Frames
	Total 37		Total 4597
1: Superficial attenuation	16	26	94
2: Tangential signal dropout	15	27	145
3: Catheter shadowing	12	21	35
4: Axial PSF tail	0	0	0
5: Proximity brightening	12	17	313

Van Soest G et al, J Biomed Opt 2010

Erasmus MC Zafm

C z a fung

Can we predict rupture?

				Erasmus MC
In-V	ivo Fibrous Cap	Detec	tion Pilot:	Calmo
Patie	ent Characteris	tics	n= 23 patients	~
	Age (yrs)	61±11		
	Male	18		
	Clinical presentation			
	Silent ischemia	1		
	Stable angina	18		
	Unstable angina	4		
	Extent of CAD			
	1 VD	14		
	2 VD	5	Target Vessel (%)	
	3 VD	4		
	Previous MI	6		
	Hypertension	13		RCA
	Dyslipidemia	11	LAD	
	Current smoker	5		
	IDDM	2		
	Pos. family history	6	Barlis P et al . A	Am J Cardiol. 2008

In-Vivo Fibrous Cap Detection Pilot:

In-Vivo Fibrous Cap Detection Pilot:

n=7 (6 Pts)

Barlis P et al . Am J Cardiol. 2008

In-Vivo Fibrous Cap Detection Pilot:

Barlis P et al . Am J Cardiol. 2008

Pilot Results: Clinical Outcome at 24 Months FUP

Erasmus MC zafing

Remote from culprit Cap thickness: 0.19±0.05mm Circumferential extent: 103 ±49°

Thin Fibrous Cap 6 Pts

Death	0	
Acute myocardial infarction	0	Repeat-PCI for in-stent
Revascularisation	1	restenosis
Hospitalization	1	Uneventful bin ondo
Angina status	_	prosthesis
CCS I CCS II CCS III CCS IV	5 1 0 0	

Barlis P et al . Am J Cardiol. 2008

OCT Assessment of Vulnerability Erasmus MC From Morphology to Symptomatic Rupture

Trigger?

OCT Assessment of Vulnerability Erasmus MC From Morphology to Symptomatic Rupture

OCT Assessment of Vulnerability From Morphology to Symptomatic Rupture Is There a Missing Link?

Hemodynamics Laboratory2003

OCT Assessment of Vulnerability From Morphology to Symptomatic Rupture

Intra-plaque Hemorrhage

Leaking from vasa vasorum or shoulders of plaque with extensive angiogenesis Fissure of fibrous cap

Virmani, et al ATVB 2000; 20: 1262

 OCT can visualize in vivo features for vulnerable plaque: TFCA (neovascularization, calcified nodule, thrombosis)

Erasmu

- High sensitivity, specificity, &negative predictive value
- Positive predictive value is moderate!
- Further validation needed!!
 - Diagnostic accuracy of plaque features
 - Interstudy/ inter-OCT system/ interobserver variablity

- Imaging: C7XR, Visipaque flush 3ml/s
- Lumen segmentation
- Speckle filtering
- Analyze using single scattering model; window length > 200 μm

 $\langle i_d(r) \rangle = I_0 \cdot T_{cath}(r) \cdot \hat{S}(r) \cdot exp(-\mu_t r)$

 $T_{cath}(r)$: catheter axial PSF $\hat{S}(r)$: roll-off correction

Relation between tissue type & attenuation coefficient

Fibrous	low
Calcium	low
Necrotic core	HIGH
Macrophages	very HIGH

📲 van Soest G et al, J. Biomed. Opt. 2010

ex vivo pullback; Tom Johnson @ BHI

Courtesy Gijs van Soest, Biomedical Engineering, EMC

Intensity

Local Retardation (φ)

Degree of Polarization (DOP)

φ DOP -Local retardation (high) reveals collagen
-DOP (low) hints at foam cells, lipid, macrophages

In-vivo human coronary; in cooperation with Villinger M, Bouma B, MGH Boston, USA

Local Retardation (φ)

In-vivo human coronary; in cooperation with Villinger M, Bouma B, MGH Boston, USA

In-vivo human coronary; in cooperation with Villinger M, Bouma B, MGH Boston, USA

Conventional OCT: 100 fps & 20 mm/s pullback speed (200 µm frame pitch).

Heartbeat OCT: 3200 fps & 100 mm/s pullback speed (31 µm frame pitch).

Wang T. van Soest G. presented at EuroPCR 2014 Wang T. et al. Optics letters 38, 1715-1717 (2013).

OCT: Future Directions Ultrafast "Heartbeat" OCT

Wang T. van Soest G. presented at EuroPCR 2014 Wang T. et al. Optics letters 38, 1715-1717 (2013).

April 6/7

Rotterdam The Netherlands

Erasmus MC

www.opticsincardiology.org

Thoraxcel

@OiCconf

Evelyn Regar Gijs van Soest

Thank you for your attention!

PhD Students & Guest Researchers

Interventional Cardiology R. Diletti R.J. van Geuns J. Daemen P. de Jaegere N. van Mieghem F. Zijlstra Experimental Cardiology H. van Beusekom

Hemodynamics Laboratory J. Wentzel F. Gijsen Bioengineering G. van Soest A.F.W. van der Steen

Imaging Group N. Bruining K. Sihan