

How to Predict the Risk of Side Branch Occlusion during Bifurcation Intervention: From RESOLVE to CIT-RESOLVE Trial

Kefei Dou, MD, PhD

Fuwai Hospital National Center for Cardiovascular Diseases, Beijing, China

Provisional Stenting vs. 2-Stent Strategy

Nordic¹ in 2006	413	Stenting MV+SB vs. Stenting MV only	A strategy of stenting the main vessel only, with optional stenting of the side branch is preferred.
BBK ² in 2008	101	Routine T-stenting vs. Provisional T-stenting	Routine T-stenting with SES did not improve the angiographic outcome.
Cactus ³ in 2009	350	Crush technique vs. Provisional SB stenting	A provisional strategy of stenting the main branch only is effective.
BBC-one ⁴ in 2010	500	Culotte or crush techniques vs. Stenting MV+KBD/T-tenting	The provisional technique should remain the preferred strategy in the majority of cases.
DKCRUSH- II ⁵ in 2011	370	DK crush vs. Provisional SB stenting	DK crush was associated with a significant reduction of TLR and TVR

MV=main vessel; SB=side branch; KBD=kissing balloon dilatation 1.Circulation. 2006 Oct 31;114(18):1955-61. 2.Eur Heart J. 2008 Dec;29(23):2859-67. 3.Circulation. 2009 Jan 6;119(1):71-8. 4.Circulation. 2010 Mar 16;121(10):1235-43. 5.J Am Coll Cardiol. 2011 Feb 22;57(8):914-20.

2/85

Incidence of SBO in Provisioanl-stenting

- Fuwai hospital: 7.37%¹
- Other centers : 8.4%-19.0%²⁻⁴

Provisional stentting cannt fix all bifurcation lesions

1.JACC Cardiovasc Interv. 2015;8(1):39-46.
2.J Am Coll Cardiol. 2013;62:1654-1659.
3.Am Heart J. 2006;151:153-157.
4.Am J Cardiol. 1997;80:994-997.

DEFINITION STUDY: Independent factors of MACE at 1yr in training group

	Р	Sen (%)	Spe(%)
Major 1: LMd bif: SB-DS ≥ 70%, SB lesion length ≥ 10mm	<0.001	80	72
Major 2: Non-LMb: SB-DS≥90%, SB lesion length ≥ 10mm	<0.001	80	74
Minor 1: Moderate to severe calcification	0.002	64	65
Minor 2: Multiple lesions	0.007	68	60
Minor 3: Bifurcation angle < 45 ⁰	0.004	64	53
Minor 4: Main vessel RVD < 2.5mm	0.010	69	58
Minor 5: Thrombus-containing lesions	0.002	66	64
Minor 6: MV lesion length $\ge 25 \text{ mm}$	0.010	57	66
Major 1 + any 2 Minor 1-6 = complex		87	83
Major 2 + any 2 Minor 1-6 = complex		88	83

Chen, et al. JACC Intv 2014;7 (11)

BL complexity score

I Sheiban, CIT2015, New Scoring System for Defining simple and Complex Bifurcation Lesions

Current commonsense on risk factors of SBO

True bifucation¹

- Diameter stenosis of MV and SB²
- Lesion length of SB³
- Lower bifurcation B angle⁴

Aliabadi D, et al. Am J Cardiol. 1997;15:80(8):994-7.
 Steigen TK, et al. Circulation. 2006;114:1955-61.
 Hahn JY, et al. J Am Coll Cardiol. 2013;62:1654-9.
 Kang SJ, et al. Circ Cardiovasc Interv. 2011;4(4):355-61.

True bifurcations are different

Diameter stenosis always change

Data from subgroup analysis of RESOLVE study

Around 20% of 301 TBLs became non-TBLs

	Baseline DS	DS after	
	(%)	<pre>predilation(%)</pre>	р
Proximal MV	58.15±26.13	43.17±18.93	p<0.01
Bifurcation core	46.25±28.02	32.83±21.02	p<0.01
Distal MV	55.46±23.89	42.70±18.00	p<0.01
SB	53.65±19.33	45.26±21.49	p<0.01

Chen XH, Zhang D, Xu B, Dou KF, CCI 2016;87(S1):554-563

How bifurcation angle impact fate of SB?

	Ν	conclusion	
Gil et al	92	Irrolovont	
in 2009	JL		
Kang et al	23	Smaller angle related to SBO	
in 2011	20	official angle related to obo	
Gwon et al	44	Irrelevent	
in 2012			
Hahn et al	2227	Irrelevent	
in 2013			
Fujino et al	75	Smaller angle related to SBO	
in 2014		official conditioned to obo	
ZHANG et	1200	Wider angle related to SPO	11/85
al in 2014	1200	whiter anyle related to SBO	11/00

Before Strategy Selection.....

 More comprehensive and precious evaluation of SBO is needed

 Bifurcation should be classified as complex or simple, risky or non-risky

RESOLVE study

Dou K, Zhang D, Xu B, et al. JACC Cardiovasc Interv. 2015;8(1):39-46.

RESOLVE Score

Predictors	Level	Point	Predictors	Level	Point
1.Plaque distribution			4.Pre-procedural diameter stenosis of bifurcation core(%)		
	opposite side of SB	0		<50	0
	same side of SB	1		[50,70)	2
2.MV TIMI flow grade before stenting				≥70	3
	TIMI III	0	5.Bifurcation angle		
	TIMI II	6	-	<70	0
	ΤΙΜΙΙ	11		[70,90)) 4
	TIMI 0	17		≥90	6
3.Diameter ratio between MV/SB			6.Diameter stenosis of SB before MV stenting (%)		
	<1.0	0		<50	0
	[1.0.1.5)	2		[50.70]	4
	[1.5,2.0)	6		[70.90]	6
	≥2.0	9		≥90	7

Dou K, et al. JACC Cardiovasc Interv. 2015 8(1):39-46. Zhang D, et al. CCI ,2015;85(1):705-716

Editorial Comment

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

VOL. 8, NO. 1, 2015 ISSN 1936-8798/\$56.00 http://dx.doi.org/10.1016/j.jcin.2014.11.007

EDITORIAL COMMENT

When You Ask Yourself the Question "Should I Protect the Side Branch?": The Answer Is "Yes"*

Antonio Colombo, MD,† Neil Ruparelia, DPHIL†‡

Although the risk score developed by the authors is interesting, we doubt that operators will try to calculate the specific score routinely prior to or during a procedure. However, further examination of the characteristics of the SB that occluded provides important information with regard to defining "highrisk" lesions and optimizing management strategy. The authors found that a high plaque burden (Medina classification 1 1 1) Thrombolysis In Myocardial

Colombo A, et al. JACC Cardiovasc Interv. 2015 8(1):47-48.

V-RESOLVE STUDY FLOWCHART

Dou KF, Zhang D, Xu B, et al. EuroInterv. 2016;11(14):1604-1611.

ROC Curve

Dou KF, Zhang D, Xu B, et al. EuroInterv. 2016;11(14):1604-1611.

Statistical simulation of 30 different observers

an average absolute difference range from -2 to 2 with the QCAbased **RESOLVE** score, and the standard deviation of the calculated V-**RESOLVE** score was set to range from 0 to 5.

Mean difference

The c-statistic of the V-RESOLVE score ranged from 0.65 to 0.77, with all p < 0.01.

Risk groups compare with RESOLVE score

V-RESOLVE sco	re RESOLVE	score P
---------------	------------	---------

Low and intermediate	Range	0-11	0-9	
risk group	Quartile	I II III	I II III	
	Rate of SB occlusion	4.32%(52/1205)	3.35%(39/1163)	0.22
	Range	12-43	10-43	
TT · 1 · 1	Quartile	IV	IV	
High risk group	Rate of SB occlusion	16.67%(66/396)	18.04%(79/438)	0.60

Dou KF, Zhang D, Xu B, et al. EuroInterv. 2016;11(14):1604-1611. Dou K, Zhang D, Xu B, et al. JACC Cardiovasc Interv. 2015;8(1):39-46

Case ---Baseline angiography

Case --- Angiography after pre-dilation

Plaque distributionat the same side of SB:
MV TIMI flow gradeTIMI III:
Diameter stenosis of bifurcation core (%)≥70%
Bifurcation angle-70°-90°:
Diameter ratio between MV/SB[1-1.5):
Diameter stenosis of SB ≥90%:

Total score: 17---high risk of SB occlusion

Case ---Final result after crush stenting

A Randomized Comparison of <u>Conventional</u> Versus Intentional StraTegy in Patients with High <u>Risk PrEdiction of Side Branch OccLusion</u> in Coronary Bifurcation InterVEntion: The CIT-RESOLVE trial (NCT02644434)

Trial design

- Prospective
- Randomized
- Multi-center
- Single-blinded

Objectives

 To investigate whether intentional strategy is associated with significant reduction of side branch occlusion rate compared to conventional strategy in patients at high risk of side branch occlusion (V-RESOLVE score≥12)

Study population

Inclusion criteria

- Subjects have coronary bifurcation lesions requiring PCI with stent implantation according to clinical guidelines and/or the operator's judgement;
- Visually estimated reference vessel diameter (RVD) of target main vessel ≥2.5 mm and ≤4.0 mm;
- Visually estimated RVD of target side branch ≥ 2.0mm;
- Coronary anatomy is likely to allow delivery of a study device to the target lesion(s);
- V-RESOLVE score ≥ 12 points.

Exclusion criteria

- Left main lesions;
- In case of acute myocardial infarction (MI) of which the culprit vessel located at the left anterior descending coronary artery (LAD), the bifurcation lesion (LAD/diagonal branch [RVD>2.5mm]) which is proximal to occluded LAD segment should be excluded.

Arms

Conventional strategy group:
 – Provisional two-stent strategy
 – Jailed wire technique

Intentional strategy group:
 – Primary two-stent strategy
 – Jailed balloon technique

Sample size Calculation

- 283 subjects in intentional strategy group and 283 in conventional strategy group, and the total number will be 566:
 - A 1:1 treatment allocation ratio of intentional strategy group and the conventional strategy group
 - A two-side significance level (alpha) of 0.05
 - 80% power to show differences in the rate of SB occlusion between intentional strategy group and conventional strategy group
 - The rate of SB occlusion in intentional strategy group: 4.0%
 - The rate of SB occlusion in conventional strategy group: 10.0%
 - The primary endpoint would be reached immediately after the main vessel stenting, therefore, the attrition rate is 0%
 - Sample size formula:

$$\frac{\left[\mu_{1-\alpha/2}\sqrt{2\overline{p}(1-\overline{p})}+\mu_{1-\beta}\sqrt{p_{T}(1-p_{T})}+p_{C}(1-p_{C})\right]^{2}}{\left(p_{T}-p_{C}\right)^{2}}$$

Endpoints

- Primary endpoint
 - Side branch occlusion after MV stenting
- Secondary endpoints
 - Elevation of biomarkers of peri-procedural myocardial injury (CK-MB and Troponin)
 - 12-month major adverse cardiac events

Thank you for your attention!