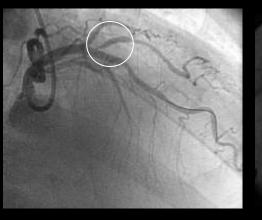
How to Treat Side Branch with FFR Guidance? (With Case Examples)

Ye Fei, MD, Shaoliang Chen, MD, FACC Nanjing First Hospital

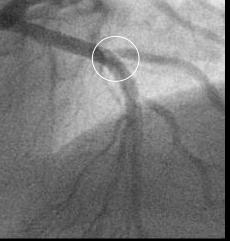
Overview

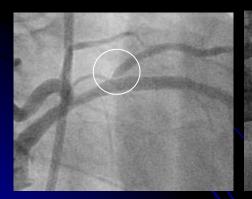
- Why do we need FFR for side branch treatment?
- How does FFR help us address side branch treatment?
- Limitation of FFR guidance for side branch;

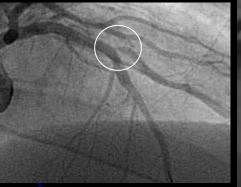

Overview

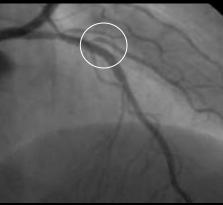
• Why do we need FFR for side branch treatment?


 Flow does FFR help us address side branch treatment?


Limitation of FFR guidance for side branch;


The phenomena of SBo been compromised after MV stenting is very common

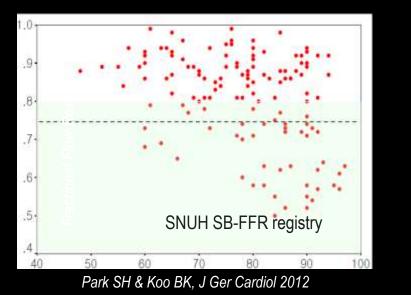


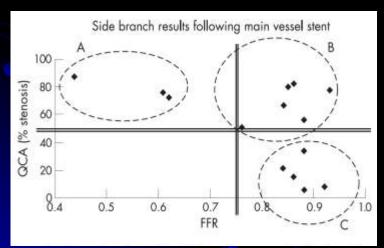


Why "physiologic evaluation" in bifurcation lesion?

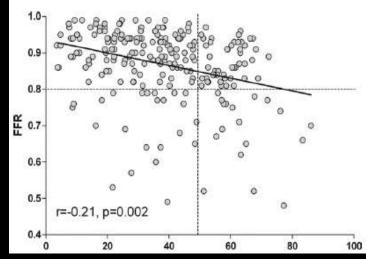
Pitfalls of anatomical evaluation

- Angiography
 - Single directional assessment
 - Variability in stenosis assessment
 - No validated criteria for intervention
 - Not physiologic

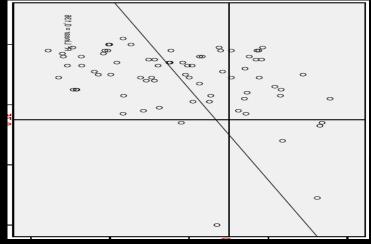

IVUS/OCT


- Difficult to perform in tight stenosis
- No validated criteria for intervention
- Not physiologic

Uniqueness of side branch lesions


- Various size, various amount of myocardium
- Side branch stenosis is unique and complex
 - Underlying plaque → Eccentric
 - Remodeling → Negative remodeling
 - Complex mechanisms of side branch jailing
 Carina shift, plaque shift, stent struts, thrombus.....

Poor Correlation between Diameter Stenosis and FFR in Jailed Side Branches



Bellenger, et al. Heart 2007

Ahn JM, et al. JACC intv 2012

Kumsars I, et al. Eurointervention 2011

Jailed Side Branches and FFR

FFR in 91 "Jailed" Side Branches, Repeated at 6 Months

	Post-intervention	Follow-up	P-value ^a
Main branch	0.96 ± 0.04	0.96 ± 0.04	0.9
Jailed side branch	0.87 ± 0.06	0.87 ± 0.09	0.7
KB group	0.86 ± 0.05	0.84 ± 0.11	0.4
Non-KB group	0.87 ± 0.06	0.89 ± 0.07	0.1

Koo, et al. Eur Heart J 2008;29:726-32.

Jailed Side Branches and FFR

FFR in 75 "Jailed" side branches from Nordic-Baltic Bifurcation III study (42 with final kissing, 32 without)

8 Month Follow-Up **Immediately Post PCI** 1 0.92 p = 0.0110.91 p = 0.190.87 0.85 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 n = 42n=33 n = 25n=21 FFR 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 No Final No **Final** Kissing Kissing <u>Kissing</u> <u>Kissing</u> No difference in clinical outcomes

Kumsars, et al. Eurointervention 2012;7:1155-61.

The Acute Changes of Fractional Flow Reserve in DK (Double Kissing), Crush, and 1-Stent Technique for True Bifurcation Lesions

FEI YE, M.D., JUN-JIE ZHANG, M.D., NAI-LIANG TIAN, M.D., SONG LIN, M.D., ZHI-ZHONG LIU, M.D., JING KAN, M.D., HAI-MEI XU, M.D., ZHONGSHENG ZHU, M.D., and SHAO-LIANG CHEN, M.D., F.S.C.A.I., F.A.C.C.

From the Nanjing First Hospital, Nanjing Medical University, Nanjing, China

FFR before and after PCI (DK crush vs Provisional)

	DK Group	1-Stent Group	P Value
FFR preprocedure	1		
MB FFR at baseline	0.83 ± 0.15	0.89 ± 0.13	0.109
SB FFR at baseline	0.84 ± 0.15	0.09 ± 0.12 0.91 ± 0.12	0.100
MB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.10	0.029
SB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.16	0.103
FFR postprocedure			
MB FFR at baseline	0.96 ± 0.02	0.95 ± 0.03	0.376
SB FFR at baseline	0.97 ± 0.02	0.96 ± 0.03	0.043
MB FFR at hyperemia	0.92 ± 0.04	0.92 ± 0.05	0.581
SB FFR at hyperemia	0.94 ± 0.03	0.90 ± 0.08	0.028

Efficacy of Fractional Flow Reserve Measurements at Side Branch Vessels Treated With the Crush Stenting Technique in True Coronary Bifurcation Lesions

Byoung Kwon Lee, MD; Hyun Hee Choi, MD; Kyung-Soon Hong, MD; Byoung-Keuk Kim, MD; Jaemin Shim, MD; Jung-Sun Kim, MD; Young-Guk Ko, MD; Donghoon Choi, MD; Yangsoo Jang, Myeong-Ki Hong, MD, PhD

	Pre-KBA MLD, MV/SB (mm)	Post-KBA MLD, MV/SB (mm)	Pre-KBA FFR	Post-KBA FFR
1	2.4/2.5	2.6/2.6	0.90	0.96
2	2.9/2.5	2.9/2.4	0.96	1.00
3	3.0/2.3	3.0/2.5	0.95	0.95
4	2.7/2.3	2.8/2.4	0.96	0.96
5	2.9/2.2	2.9/2.4	0.92	1.00
6	3.1/1.8	3.2/2.0	0.95	0.98
7	3.0/2.2	2.9/2.3	0.94	0.96
8	2.8/1.6	2.7/1.8	1.00	1.00
9	3.0/2.8	2.9/2.8	0.94	0.94
10	0 3.1/2.9	3.0/3.0	0.88	0.94
11	1 3.4/2.4	3.3/2.3	0.88	0.94
1:	2 3.2/2.1	3.2/2.3	0.97	1.00

0.94 ± 0.04 0.97 ± 0.03

J Interven Cardiol 2010

Clinical Cardiol 2010

DK crush stenting was associated with higher FFR and lower residual diameter stenosis in the SB, as compared with the provisional 1-stent group.

FFR changes between DK and PS after PCI

F	FR changes	DK (<i>n</i> =38)	PSBS (<i>n</i> =30)	<i>P</i> values
MV, at hyperen	nia			
	FFR before-PCI	0.76 ± 0.16	0.82 ± 0.13	0.077
	<0.80 (<i>n</i> (%))	16 (42.1)	20 (66.7)	0.054
	FFR post-PCI	0.92 ± 0.04	0.93 ± 0.04	0.516
	>0.94 (<i>n</i> (%))	11 (29.7)	11 (36.7)	0.607
	FFR gain	0.16 ± 0.16	0.12 ± 0.13	0.123
SB, at hyperem	ia			
	FFR before-PCI	0.76 ± 0.17	0.79 ± 0.18	0.339
	<0.80	19 (50.0)	20 (66.7)	0.219
	FFR post-PCI	0.93 ± 0.04	0.91 ± 0.08	0.159
	>0.94 (<i>n</i> (%))	17 (45.9)	12 (40.0)	0.804
	≥0.90 (<i>n</i> (%))	30 (81.1)	22 (73.3)	0.559
	FFR gain	0.18 ± 0.15	0.12 ± 0.18	0.044

Ye F, Chen SL, Zhang JJ, et al. Chin Med J (Engl). 2012 Aug;125(15):2658-62.

FFR changes between DK and PS at 8-month follow-up

DK (n=29)	PS (<i>n</i> =23)	P values
0.92 ± 0.05	0.90 ± 0.05	0.297
11 (37.9)	7 (30.4)	0.585
0.003 ± 0.07	-0.03 ± 0.06	0.086
0.93 ± 0.05	0.87 ± 0.04	0.007
23(79.3)	13(56.5)	0.032
-0.002 ± 0.07	-0.06 ± 0.11	0.037
	0.92 ± 0.05 11 (37.9) 0.003 ± 0.07 0.93 ± 0.05 23(79.3)	0.92 ± 0.05 0.90 ± 0.05 $11 (37.9)$ $7 (30.4)$ 0.003 ± 0.07 -0.03 ± 0.06 0.93 ± 0.05 0.87 ± 0.04 $23(79.3)$ $13(56.5)$

Ye F, Chen SL, Zhang JJ, et al. Chin Med J (Engl). 2012 Aug;125(15):2658-62.

Overview

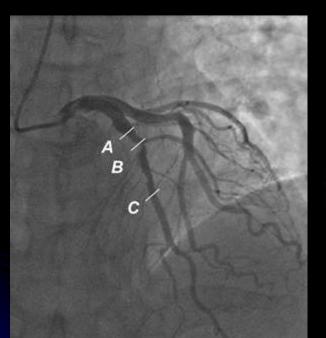
- Why do we need FFR for side branch treatment?
- How does FFR help us address side branch treatment?
- Limitation of FFR guidance for side branch;

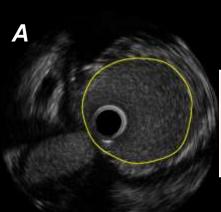
When should we assess the SB with FFR after MV stenting?

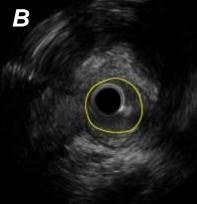
- SB is clinical significant;
- Large SBs with ostial severe stenosis (supplying large amount of myocardium);
- Middle or even small SBs with ostial severe stenosis of patients with lower EF;
- If small SBs with slow/no flow, FFR should not be measured before kissing...

Case 1

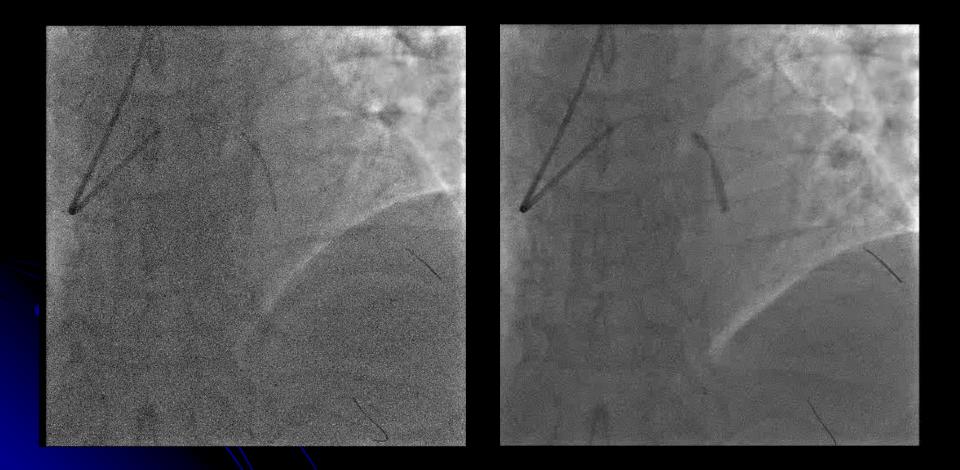
Clinical feature


- 57-year-old, Male
- Severe effort angina in the last 2 months (CCS III)
- Risk Factors: Current smoker
- **ECG:** Lead V1-V4: ST segment depression, T wave inversion
- **UCG: LVDd 65mm, EF 48%**
- **NT-proBNP:** 105.7pg/ml


Coronary Angiography



Medina classification: 1,1,0


C	A	-	
	K	Ŋ	Tar

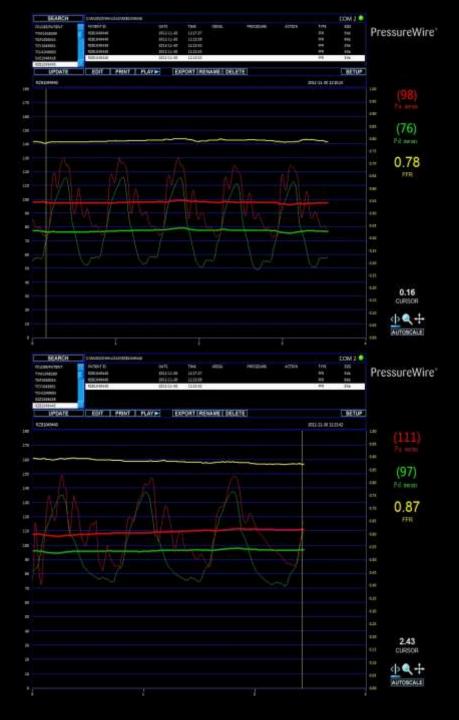
	Area	Diameter (mm)		
	(mm²)	Mean	Min	Мах
Lumen	14.67	4.33	4.20	4.47

	Area	Dia	imeter (r	nm)
	(mm²)	Mean	Min	Мах
Lumen	3.88	2.24	2.15	2.33

	Area	Diameter (mm)		
	(mm²)	Mean	Min	Мах
Lumen	9.54	3.50	3.32	3.67

Provisional T Stenting technique

3.5*28mm XIENCE V 12atm*30s



Postdilatation 4.5*8mm Quantum 20atm*15s

	Area	Diameter (mm)			
	(mm²)	Mean	Min	Мах	
Stent	13.85	4.21	4.03	4.39	

FFR measurement again after postdilatation for SB

4.5*8mmQuantum with 14atm and 2.0*8mmAPEX with 8atm for kissing inflation

Final Result

Follow-up after 1 year

Overview

- Why do we need FFR for side branch treatment?
- Flow does FFR help us address side branch treatment?

Limitation of FFR guidance for side branch;

FFR measurement for complex SB after MV stenting

25

DK crush vs. Provisional

DK Group	1-Stent Group	P Value
0.83 ± 0.15	0.89 ± 0.13	0.109
0.84 ± 0.15	0.91 ± 0.12	0.100
0.76 ± 0.15	0.83 ± 0.10	0.029
0.76 ± 0.15	0.83 ± 0.16	0.103
0.96 ± 0.02	0.95 ± 0.03	0.376
0.97 ± 0.02	0.96 ± 0.03	0.043
0.92 ± 0.04	0.92 ± 0.05	0.581
0.94 ± 0.03	0.90 ± 0.08	0.028
	Group 0.83 ± 0.15 0.84 ± 0.15 0.76 ± 0.15 0.76 ± 0.15 0.96 ± 0.02 0.97 ± 0.02 0.92 ± 0.04	GroupGroup 0.83 ± 0.15 0.89 ± 0.13 0.84 ± 0.15 0.91 ± 0.12 0.76 ± 0.15 0.83 ± 0.10 0.76 ± 0.15 0.83 ± 0.16 0.96 ± 0.02 0.95 ± 0.03 0.97 ± 0.02 0.96 ± 0.03 0.92 ± 0.04 0.92 ± 0.05

In our pilot study of SB FFR comparing DK and Provisional technique, about 3.4% pts were failed in FFR measurement after MV stenting.


Ye F, Chen SL, et al. J Interven Cardiol 2010

Case presentation: DGY, female, 78y, chest discomfort for 1y, EF 35%

2-vessel disease, for the reason pt refuse to be sent to surgery, stage PCI strategy was performed for LCA lesions.

Predilation with a 2.0*15mm balloon

The next strategy...

- 1-stent strategy with a wire jailed in OM;
- FFR measuring of OM
- Then...

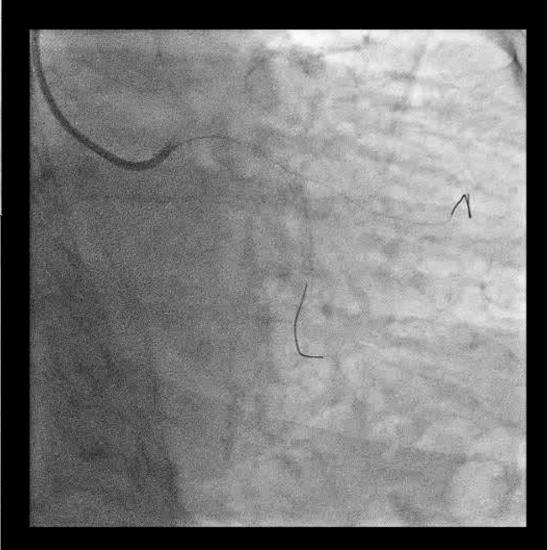
2.75*36mm DES deployed from proLCX-disLCX

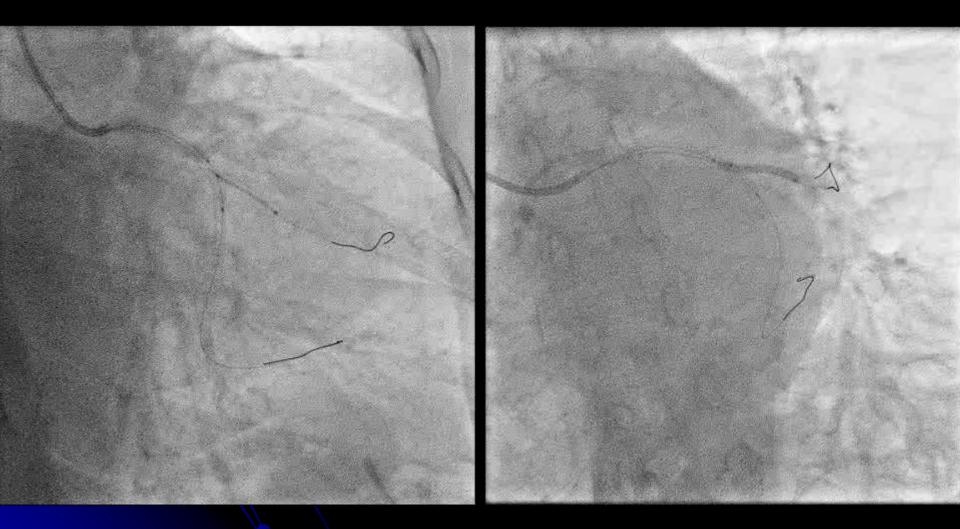
Next strategy...

Ostial OM was compressed by carina shift or plaque shift, but flow was good;

Ostial OM and proximal segment was very tortous;

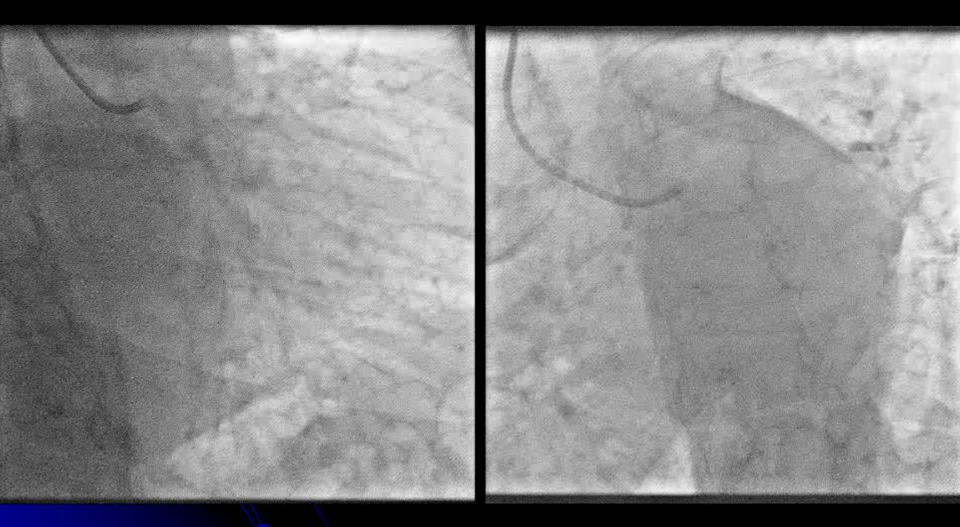
FFR measure would be difficult;


So, we left another wire in the *OM*...


Measuring FFR of OM was very difficult for the pressure wire controlling into OM, and dissection occurring...

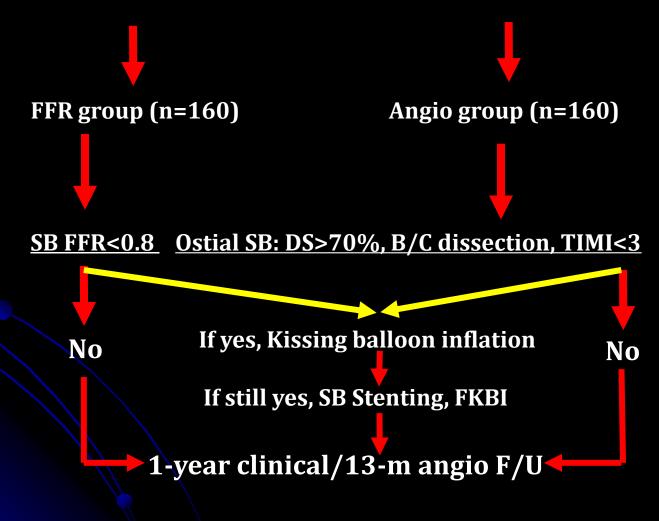
Predilation and kissing balloon inflation at LCX-OM bif

2.5*18mm DES implanted at ostial OM



FKI and after kissing

Re-measure FFR of OM



DKCRUSH-VI Study Design

Medina 1,1,1/0,1,1 bifurcation lesions, SB≥2.5 mm

Chen SL, et al, JACC Cardiovasc Interv 2015

DKCRUSH-VI Study Design

One-year clinical outcomes

	Angio group (n=160)	FFR group (n=160)	р
Cardiac death, n(%)	1 (0.6)	2 (1.3)	0.56
MI, n(%)	22 (13.8)	19 (11.9)	0.74
TLR, n(%)	8 (5.0)	5 (3.1)	0.57
CABG, n(%)	0	0	
TVR, n(%)	11 (6.9)	9 (5.6)	0.82
MACE, n(%)	29 (18.1)	29 (18.1)	1.00
ST-def/prob, n(%)	2 (1.3)	1 (0.6)	0.56

Conclusions

- Angiographic evaluation of bifurcation lesions always mismatch their functional significance
- FFR measurement is feasible and safe in bifurcation lesions, and can help guide the decision regarding the need for PCI except a little difficult of manipulation

Thanks for your attention