PVR After TAVR: Insights from PARTNER II S3HR and S3i

Susheel Kodali, MD

Columbia University Medical Center Cardiovascular Research Foundation New York City

Disclosure Statement of Financial Interest Susheel K. Kodali, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

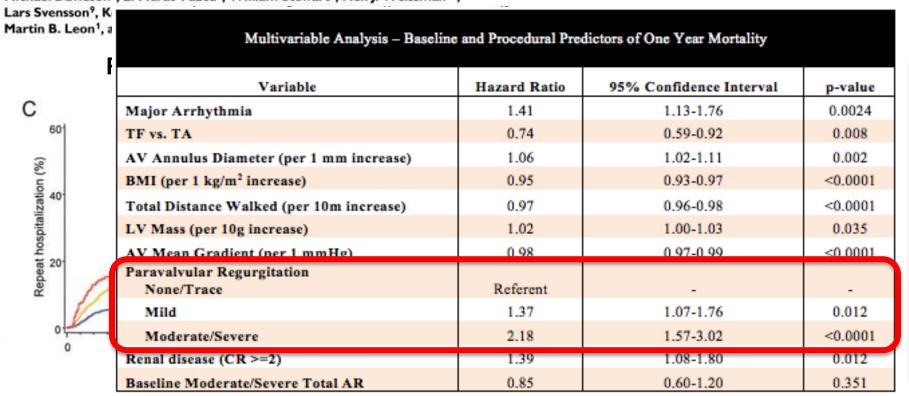
- Honoraria
- Steering Committee
- SAB

Company

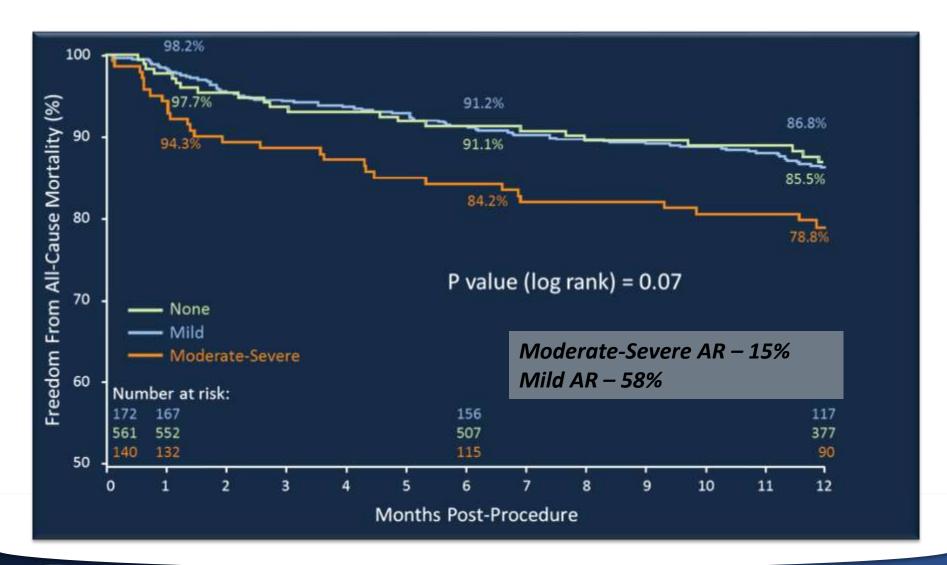
- St. Jude Medical, Claret Medical
- Edwards Lifesciences, Claret Medical
- Thubrikar Aortic Valve, Inc, Dura Biotech, VS Medtech

Incidence, Predictors, and Outcomes of Aortic Regurgitation After Transcatheter Aortic Valve Replacement

Meta-Analysis and Systematic Review of Literature

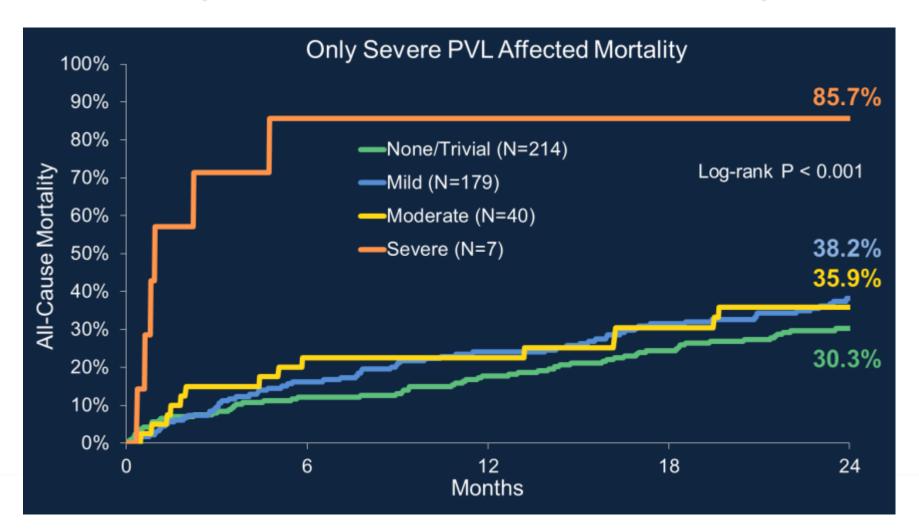

Ganesh Athappan, MD,*† Eshan Patvardhan, MD,* E. Murat Tuzcu, MD,*

Lars Georg Svensson, MD, PhD, Pedro A. Lemos, MD, Chiara Fraccaro, MD, PhD,


Giuseppe Tarantii	071			mpa	ct of I	Mild AF	on M	lort	ality						
Davide Capodanno, Antonio Colombo,]		Statistics for each study						Hazard ratio and 95% CI							
		Hazard ratio	Low		Upper limit	Z-Value	p-Valu	ie							
	Lemos	10.080	1.2	229	82.673	2.152	0.03	31	1	1	1	1-	+	+	4
	Sinning	2.342	1.0	066	5.145	2.119	0.03	34				-		-	
	Kodali	2.110	1.4	133	3.107	3.782	0.00	00				4	-		
	Fraccaro	2.064	0.9	968	4.400	1.876	0.06	51					-		
	Tamburino	0.780	0.4	199	1.218	-1.092	0.27	75			Н			_	
	AII (N=1620)	1.829	1.0	005	3.329	1.975	0.04	48	0.1	0.2	0.5	1	2	5	10
										Decrea	sed Ris	k In	crease	d Risk	
	Gilard	2	2.490	1.909	3.248	6.728	0.000					1			
	All (N=4791)	2	.273	1.840	2.808	7.609	0.000	- 1				-		I	
6	All (14-4751)	•		1.040	2.000	1.000	0.000	0.1	0.2	0.5	1	2	5	10	
OCIALIS REMARCIA		Decreased Risk Increased F								sed R	sk				

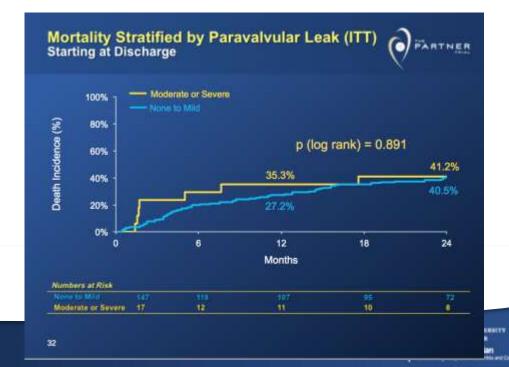
Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: characterizing patients and impact on outcomes

Susheel Kodali^{1*}, Philippe Pibarot², Pamela S. Douglas³, Mathew Williams¹, Ke Xu⁴, Vinod Thourani⁵, Charanjit S. Rihal⁶, Alan Zajarias⁷, Darshan Doshi¹, Michael Davidson⁸, E. Murat Tuzcu⁹, William Stewart⁹, Neil J. Weissman¹⁰,



CoreValve ADVANCE | Survival by AR*

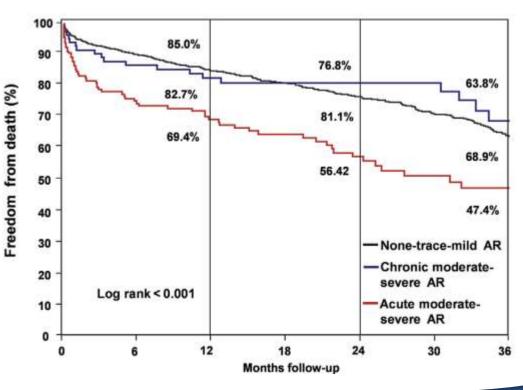
PVL and All-Cause Mortality (CoreVALVE Extreme Risk)



Why is there conflicting data regarding mild PVL and its impact on mortality?

➤ Different patient populations — Competing

Risks


Clinical Impact of Aortic Regurgitation After Transcatheter Aortic Valve Replacement

Insights Into the Degree and Acuteness of Presentation

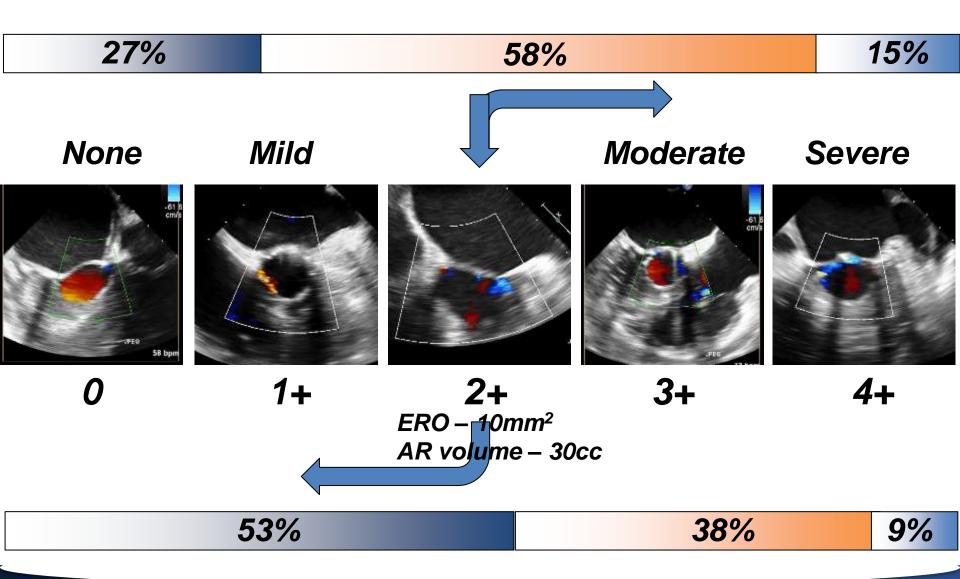
Miguel Jerez-Valero, MD, Marina Urena, MD, John G. Webb, MD, Corrado Tamburino, MD, Antonio J. Munoz-Garcia, MD, PhD, Asim Cheema, MD, Antonio E. Dager, MD, Vicenç Serra, MD, Ignacio J. Amat-Santos, MD, Marco Barbanti, MD, Sebastiano Immè, MD, Juan H. Alonso Briales, MD, Hatim Al Lawati, MD, Luis Miguel Benitez, MD, Angela Maria Cucalon, MD, Bruno Garcia del Blanco, MD, Hatim Al Lawati, MD, Luis Miguel Benitez, MD, Angela Maria Cucalon, MD, Bruno Garcia del Blanco, MD, Hatim Al Lawati, MD, Luis Miguel Benitez, MD, Angela Maria Cucalon, MD, Bruno Garcia del Blanco, MD, Hatim Al Lawati, MD, Marco Barbanti, MD, Marco Barb

Ana Revilla, MD, PhD,** Eric Dumont, MD,* Henrique Barbosa Sébastien Bergeron, MD,* Philippe Pibarot, PhD,* Josep Rodés

- Registry of 1735 patients
- Moderate to Severe PVR present in 14.2% of patients
- Although mild PVL did not impact late mortality, moderate PVL did lead to worse survival (HR – 1.68[1.27-2.24])
- Magnitude of impact blunted by presence of baseline AR

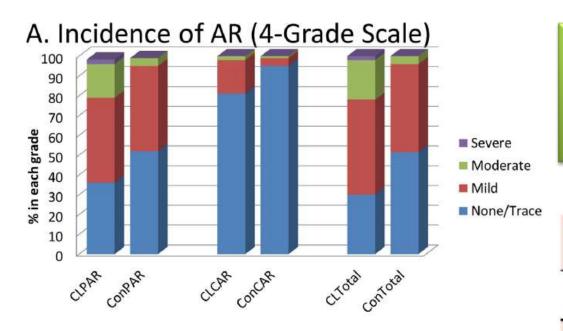
Why is there conflicting data regarding mild PVL and its impact on mortality?

- Different patient populations Competing Risks
- ➤ Differential impact based on valve type (PVR regression over time with CoreValve?)



Why is there conflicting data regarding mild PVL and its impact on mortality?

- ➤ Different patient populations Competing Risks
- ➤ Differential impact based on valve type (PVR regression over time with CoreValve?)
- > Challenges with assessment


Challenges of PVL Assessment

Assessment of Paravalvular Aortic Regurgitation after Transcatheter Aortic Valve Replacement: Intra-Core Laboratory Variability

Rebecca T. Hahn, MD, FACC, Philippe Pibarot, DVM, PhD, FACC, Neil J. Weissman, MD, FACC, Leonardo Rodriguez, MD, FACC, and Wael A. Jaber, MD, FACC, New York, New York; Québec City, Québec, Canada; Washington, District of Columbia; and Cleveland, Ohio

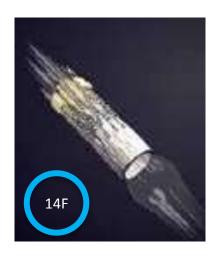
15.9% of patients graded as moderate by one corelab would be graded as mild by another corelab consortium

Table 2 Number of patients in each PAR grade for the PARTNER IIB core laboratory and the consortium: four-grade scale

	Consortium						
PARTNER IIB core laboratory	1	2	3	4			
1	31*	1	0	0			
2	17 [‡]	21"	0	0			
3	0	14 [±]	1*	0			
4	0	0	2‡	0"			

PAR, Paravalvular aortic regurgitation.

Grading scheme: 1 = none/trace: 2 = mild; 3 = moderate; 4 = severe.

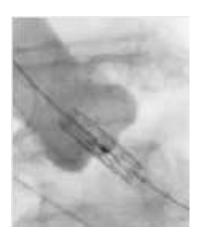

*Agreement between core laboratory and consortium.

[†]Underestimation by the core laboratory.

[‡]One-grade overestimation by the core laboratory.

SAPIEN 3 Transcatheter Heart Valve

Distinguishing Features



 14F eSheath compatible*

VALVE DESIGN

- Balloon Expandable
- Bovine Pericardial Tissue
- Outer Sealing Skirt

ACCURATE PLACEMENT

- Distal flex & fine adjustment feature
- Center Marker Positioning

The PARTNER II S3 Trial **Study Design**

Symptomatic Severe Aortic Stenosis ASSESSMENT by Heart Valve Team Intermediate Risk SAPIEN 3 High Risk Operable / n = 1076n = 583**Operable** Inoperable **Patients Patients** (PII S3i) (PII S3HR) 2 Single Arm Non-Randomized **Historical-Controlled Studies ASSESSMENT: Optimal ASSESSMENT: Optimal** PII A PI A **Valve Delivery Access Valve Delivery Access SAVR SAPIEN** Transfemoral (TF)

Transapical /

Transaortic (TAA)

TAA TAVR

SAPIEN 3

Transfemoral (TF)

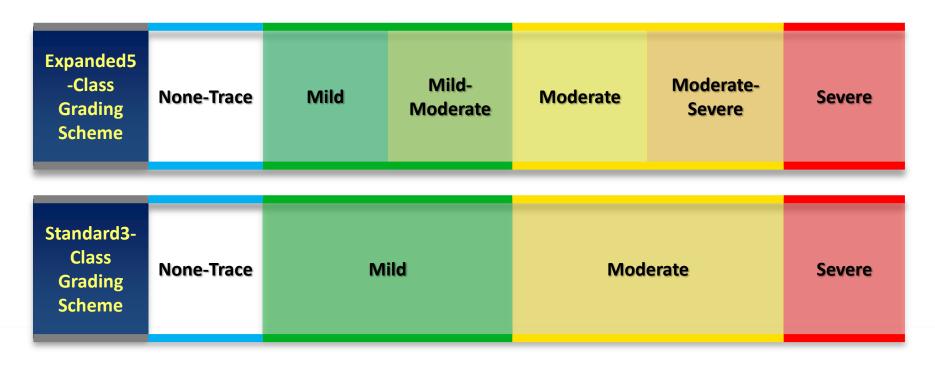
TF TAVR

SAPIEN 3

TF TAVR

SAPIEN 3

Transapical /

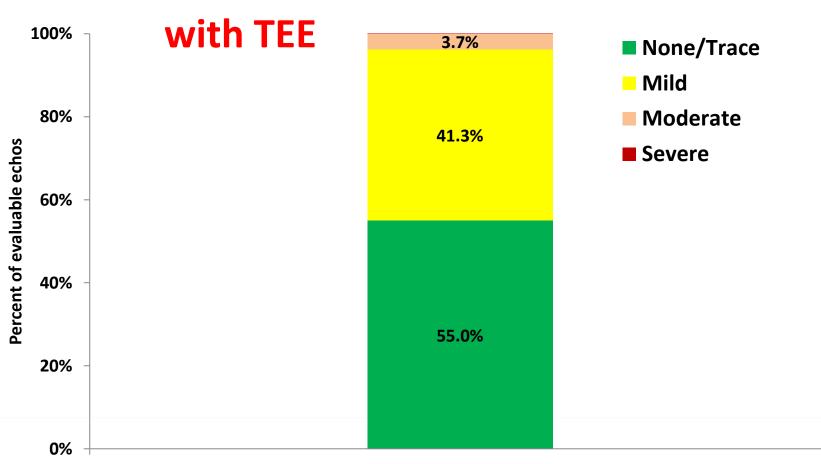

Transaortic (TAA)

TAA TAVR

SAPIEN 3

Echo PVR MethodologyGrading Scales

Echo assessment of paravalvular regurgitation based on an expanded classification scheme which was then collapsed to the standard classification scheme

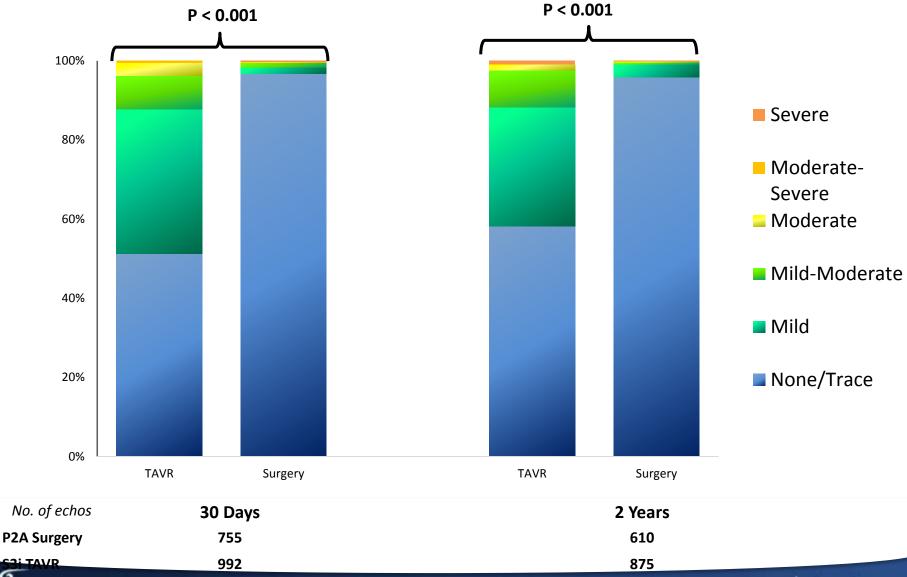


Echo PVR MethodsGrading Scales

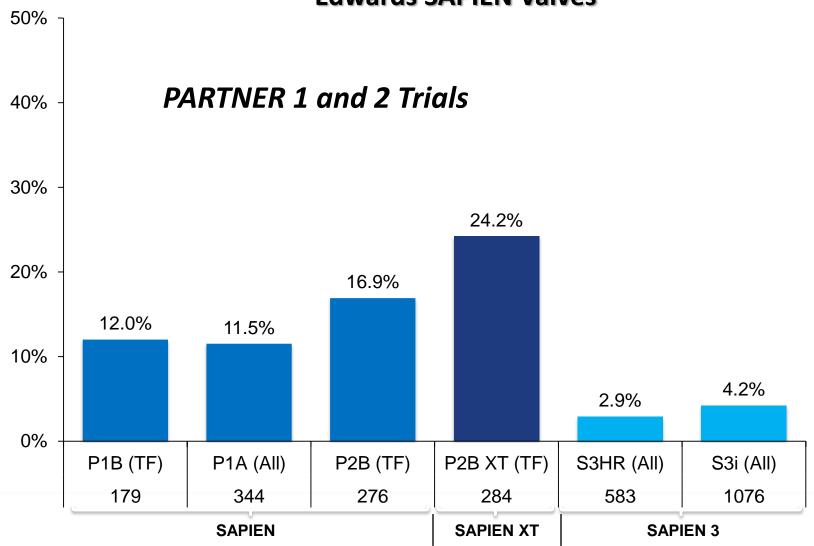
3-CLASS GRADING SCHEME	TRACE	MILD		MODE	SEVERE	
UNIFYING 5-CLASS GRADING SCHEME	TRACE	MILD	MILD-TO- MODERATE	MODERATE	MODERATE- TO-SEVERE	SEVERE
Structural Parameters						
Valve stent	Usually	Usually	Normal/	Normal/	Usually	Usually
Doppler parameters (qualitative or semi-quantitative)	normal	normal	abnormal†	abnormal†	abnormal†	abnormal†
Jet features						
Extensive/wide jet origin	Absent	Absent	Absent	Present	Present	Present
Multiple jets	Possible	Possible	Often present	Often present	Usually	Usually
Jet path visible along the stent	Absent	Absent	Possible	Often present	present	present
Proximal Flow convergence visible	Absent	Absent	Absent	Possible	Usually present	Present Often present
					Often present	
 Jet width at its origin (%LVOT diameter): color Doppler 	Narrow (<5)	Narrow (5-15)	Intermediate (15-30)	Intermediate (30-45)	Large (45-60)	Large (>60)
 Jet deceleration rate (PHT, ms): CW Doppler 	Slow (>500)	Slow (>500)	Slow (>500)	Variable (200-500)	Variable (200-500)	Steep (<200)
 Diastolic flow reversal in the descending aorta: PW Doppler 	Absent	Absent or brief early diastolic	Intermediate	Intermediate	Holodiastolic (end-diast. vel.>20 cm/s)	Holodiastolic (end-diast. vel.>25 cm/s)
 Circumferential extent of PVR (%) color Doppler 	<10	<10	10-20	20-30	>30	>30
Doppler parameters (quantitative)						
o Regurgitant fraction (%)	<15	<15	15-30	30-40	40-50	>50

Paravalvular Leak (S3HR and S3i)

85% under GA



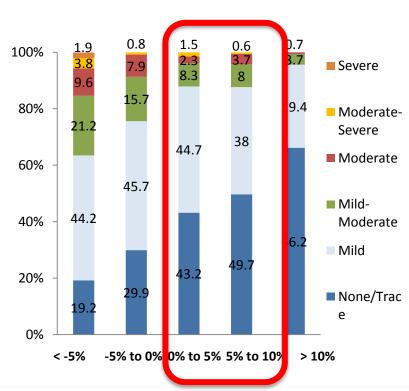
30 Days


S3i – Paravalvular Regurgitation

5-Class Grading Scheme

Moderate/Severe PVL at 30 Days

Edwards SAPIEN Valves



Know your device characteristics

Willson et al. JACC April 3 2012

<10%

THV area/annular area

≥10%

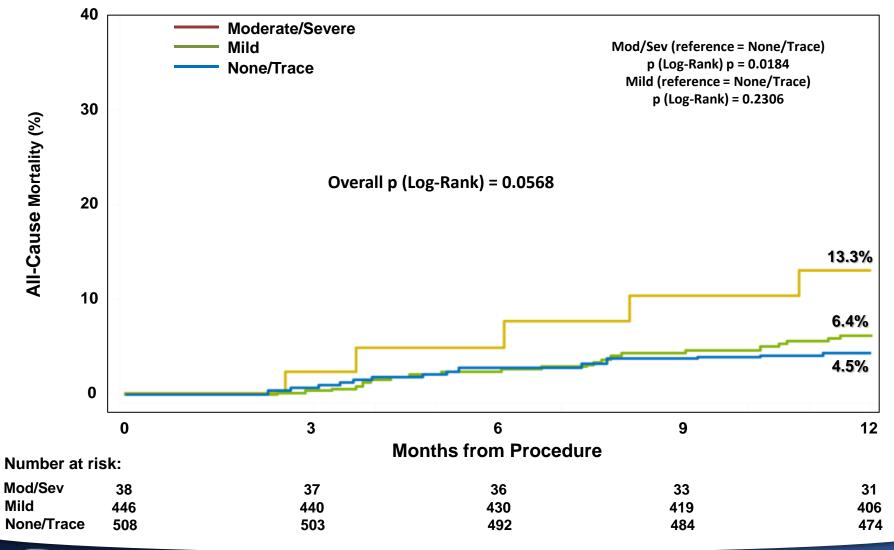
2.2

21

<1

(mm)

THV diameter - mean diameter


Blanke et al. EuroPCR 2015

0

Mortality by PVR Severity

S3i

Impact of PVL on Mortality S3HR

Mild

Conclusions

- Rates of moderate to severe PVR after TAVR are significantly lower than those seen with prior iterations of balloon expandable valves
- Device iteration as well as procedural technique are likely responsible for these improvements
- Mild PVR does not appear to have an impact on mortality at one year in either high risk or intermediate risk cohorts
- PVR assesment remains challenging and more granular grading schemes may help with consistency
- Further analyses using granular grading scale forthcoming

