TAVR: Insights from QOL and Economic Evaluation

David J. Cohen, M.D., M.Sc.

Director, Cardiovascular Research Saint-Luke's Mid America Heart Institute

> Professor of Medicine University of Missouri-Kansas City

> > TCT-AP 2016 12 minutes 26 slides

Disclosures

Grant Support/Drugs

- Daiichi-Sankyo
- Astra-Zeneca

Grant Support/Devices

- Edwards Lifesciences
- Medtronic
- Biomet

Consulting/Advisory Boards

- Medtronic
- Edwards Lifesciences

- Eli Lilly
- Merck

- Abbott Vascular
- Boston Scientific

- Astra-Zeneca

Why You Should Care

For inoperable patients....

- TAVR leads to substantial improvements in survival, with benefits sustained through 5 years
- Given the advanced age and burden of comorbidity in this population, improved QOL likely to be as important a therapeutic goal as increased survival

Key questions:

Can we afford to offer TAVR to all such patients?

Background-2

For high-risk, but operable, patients

- No definitive difference in long-term survival with TAVR compared with surgical AVR
- Some complications actually increased (e.g., stroke, paravalvular AI)
- TAVR prosthesis much more costly (\$30K vs. \$5K)

Key question:

Is there an economic or QOL benefit of TAVR that can justify the more costly procedure?

TAVR: QOL Insights

Quality of life improves substantially after TAVR, even among inoperable patients

KCCQ: Interpretation

Change in KCCQ-Overall Summary Score

Am Heart J 2005; 150:707-15

Primary Endpoint: KCCQ Overall Summary

Reynolds MR, et al. Circulation 2011;124:1964-72

PART

Generic QOL and Utilities

EQ-5D Utilities

SF-12 Mental

5 point difference comparable to 10-year age difference

Reynolds MR, et al. Circulation 2011;124:1964-72

MCID = minimum clinically important difference

PARTNER

TAVR: QOL Insights

Quality of life benefits of TAVR are durable among surviving patients

CoreValve US Clinical Trials

CoreValve Extreme Risk: 3 Year QOL KCCQ Overall Summary

* Iliofemoral Access

Baron SJ, et al. ACC 2016

TAVR: Key QOL Insights

Although QOL improves substantially after TAVR, on an individual level there is still considerable heterogeneity of benefit

KCCQ-Summary: Significant Improvement *

* Improvement \geq <u>10 points</u> vs. baseline among patients with available QOL data

TAVR: Key QOL Insights

"Less invasive" procedures don't always result in better quality of life

PARTNER A KCCQ Overall Summary

Growth curve analysis; adjusted for baseline MCID = minimum clinically important difference

Reynolds MR, et al. J Am Coll Cardiol 2012

KCCQ Overall Summary TF Subgroup

P-values are for mean treatment effect of TAVR vs. AVR

Reynolds MR, et al. J Am Coll Cardiol 2012

KCCQ Overall Summary TA Subgroup

P-values are for mean treatment effect of TAVR vs. AVR

Reynolds MR, et al. J Am Coll Cardiol 2012 (in press)

CoreValve US Clinical Trials

CoreValve High Risk Benefit of TAVR over SAVR by Access Site

* Non-IF = TAo or Subclavian

Arnold SV, et al. J Am Coll Cardiol Intv 2015;8:1207-17

Differential QOL Outcomes with Femoral vs. Alternative Access: *Potential Mechanisms*

- Non-IF patients are different-- the best TAVR candidates were selected for a TF approach
- Inexperienced operators/Learning curve
 - Improved results seen for other outcomes in continued access TA cohort → ? QOL impact
- Less invasive isn't necessarily less painful
 - Thoracic surgery experience suggests that median sternotomy is generally less painful than other forms of thoractomy

TAVR: Key Economic Insights

The cost-effectiveness of TAVR is dependent on the patient population, alternative treatment options, and access site

Cost-Effectiveness of TAVR vs. Control Lifetime Results

Reynolds MR et al. <u>Circulation</u> 2012; 125:1102-9

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc. Published by Elsenter Inc. Vol. 63, No. 21, 2014 ISSN 0735-1097/**5**36.00 np://dx.doi.org/10.1016/j.jacc.2014.03.016

CrossMark

PERFORMANCE MEASURES

ACC/AHA Statement on Cost/Value Methodology in Clinical Practice Guidelines and Performance Measures

A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force on Practice Guidelines

Anderson JL et al. JACC doi: 10.1016/j.jacc.2014.03.016

Impact of Patient Population on Cost-Effectiveness of TAVR

Population	Δ Costs	Life Expectancy	ICER
Extreme Risk	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	Intermediate to High Value

Impact of Patient Population on Cost-Effectiveness of TAVR

Population	Δ Costs	Life Expectancy	ICER
Extreme Risk	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	Intermediate to High Value
Very High Risk	Similar	Slight ↑	Dominant/ High Value

Impact of Patient Population on Cost-Effectiveness of TAVR

Population	Δ Costs	Life Expectancy	ICER
Extreme Risk	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	Intermediate to High Value
Very High Risk	Similar	Slight ↑	Dominant/ High Value
High Risk	$\uparrow \uparrow$	$\uparrow \uparrow$	Intermediate to High Value

Impact of Patient Population on Cost-Effectiveness of TAVR

Population	Δ Costs	Life Expectancy	ICER
Extreme Risk	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	Intermediate to High Value
Very High Risk	Similar	Slight ↑	Dominant/ High Value
High Risk	$\uparrow\uparrow$	$\uparrow\uparrow$	Intermediate to High Value
Intermediate Risk	???	???	???

TAVR QOL and Economics

Final Thoughts

- For inoperable patients, cost-effectiveness of TAVR depends mainly on its ability to achieve substantial longterm survival and QOL benefits
 - How can we prospectively identify patients who are unlikely to derive meaningful QOL and survival benefit from TAVR?
- For operable patients, benefits of TAVR relate both to short-term improvement in QOL and reduced cost
 - Improved cost-effectiveness will be driven by reductions in LOS, particularly for uncomplicated admissions (i.e., minimalist approach)
 - Eventually, reductions in valve pricing will also lead to substantial cost savings
 -> essential to justify TAVR in lower risk populations