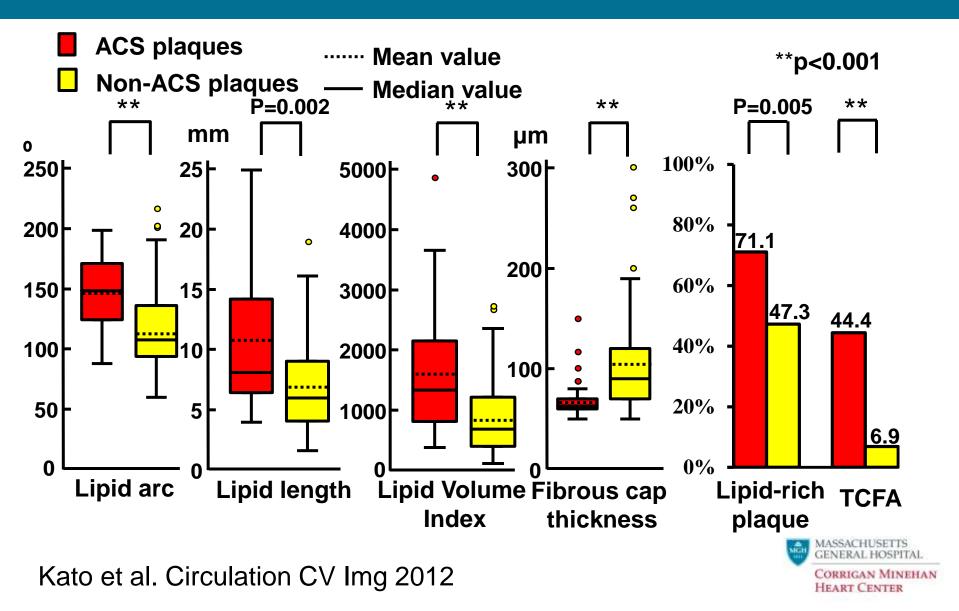
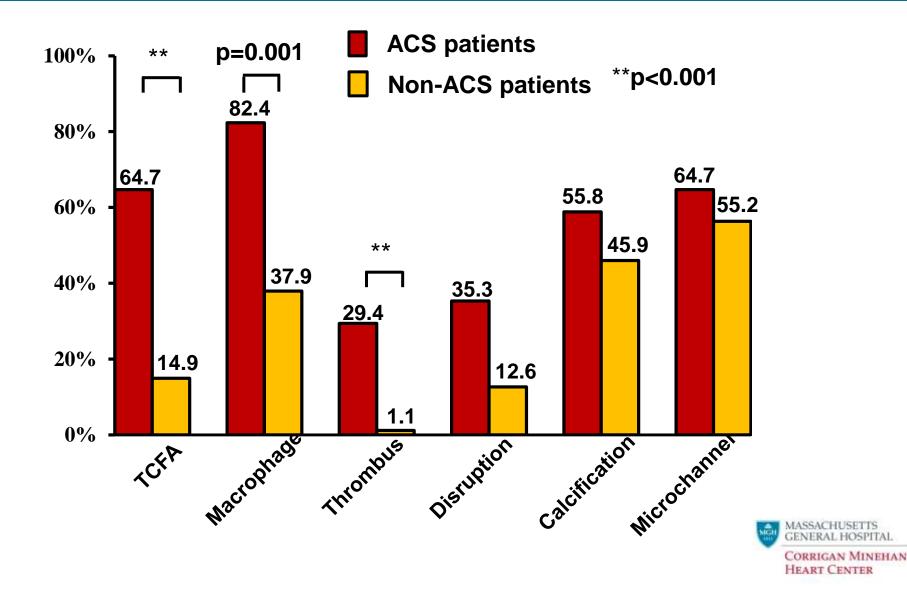


Risk of Recurrence in ACS: Why they happen and how to stop them?

Ik-Kyung Jang, MD, PhD Professor of Medicine, Harvard Medical School Michael and Kathryn Park Endowed Chair in Cardiology

- Panvascular inflammation
- Fibrous cap
- Plaque burden
- Contemporary medical therapy




- Patients with ACS have a higher incidence of recurrent ischemic events.
- Pan-vascular plaque instability may be the underlying mechanism.

Plaque-based comparison

Patient-based comparison

- Compared to non-ACS plaques, ACS plaques in the non-culprit lesion had a <u>larger lipid volume</u> <u>index</u> and a <u>thinner fibrous cap</u>.
- 2. <u>TCFA, macrophage, and thrombus</u> in the nonculprit plaques were more frequent in ACS patients.
- \rightarrow Panvascular Inflammaiton

Panvascular inflammation

- Fibrous cap
- Plaque burden
- Contemporary medical therapy

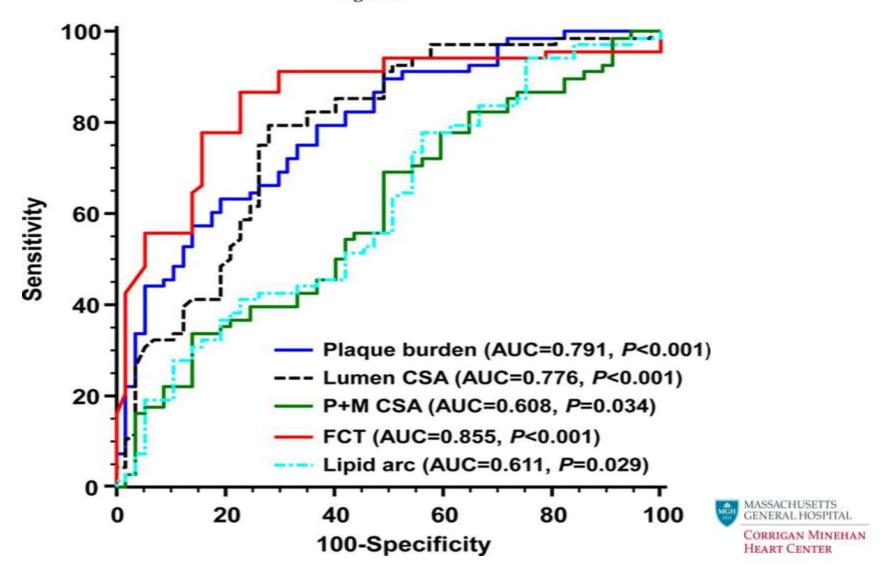
Aim

To analyze OCT and IVUS images of all 3 major epicardial arteries in ACS patients, and compare the morphological characteristics between the 3 groups.

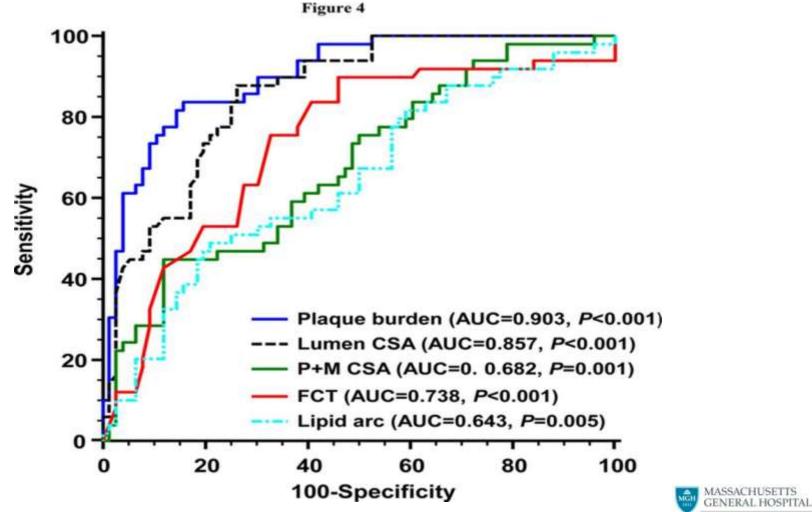
- ruptured culprit plaque (RCP)
- ruptured non-culprit plaque (RNCP): silent rupture
- non-ruptured TCFA

OCT findings: Rupture vs Non-rupture

	RCP (n=49)	RNCP (n=19)	TCFA (n=58)	P value			
				RCP <i>vs.</i> RNCP	RCP <i>vs.</i> TCFA	RNCP <i>vs.</i> TCFA	
FCT , μm	43±11	41±10	56±9	0.276	<0.001	<0.001	
Lipid arc, °	241±64	214±54	207±63	0.023	0.005	0.581	
Lipid length, mm	11.5±5. 5	10.5±2. 8	10.5±4.9	0.409	0.238	0.778	
Microvessel	24(49)	7(37)	21(36)	0.174	0.193	0.986	
Macrophage	40(82)	14(74)	49(85)	0.468	0.684	0.258	
Calcification	24(49)	6(32)	27(47)	0.098	0.805	0.273	
Cholesterol crystal	19(39)	5(26)	14(24)	0.355	0.122	0.877	
Thrombus	38(78)	12(63)	0(0)	0.279	<0.001	<0.001	



IVUS findings: Clinical vs Silent


				P value			
	RCP (n=49)	RNCP (n=19)	TCFA (n=58)	RCP <i>vs.</i> RNCP	RCP <i>vs.</i> TCFA	RNCP <i>vs.</i> TCFA	
	Proximal reference segment						
EEM CSA, mm ²	13.0±4.2	12.3±4.4	13.7±5.4	0.537	0.432	0.167	
Lumen CSA, mm ²	6.5±2.3	7.2±3.3	8.8±4.0	0.419	<0.001	0.069	
Distal reference segment							
EEM CSA, mm ²	9.1±3.2	9.2±4.1	10.6±3.4	0.959	0.039	0.027	
Lumen CSA, mm ²	5.5±2.0	6.0±3.5	7.8±3.2	0.550	<0.001	0.190	
Lesion segment							
EEM CSA, mm ²	12.8±3.5	12.6±4.6	13.9±5.2	0.829	0.154	0.219	
Lumen CSA, mm ²	2.1±0.9	4.6±2.3	5.1±2.7	0.001	<0.001	0.423	
P+M CSA, mm ²	10.8±3.3	8.0±2.8	8.9±3.6	0.001	0.005	0.233	
Plaque burden, %	82±7.2	64±7.2	62±12.5	<0.001	<0.001	0.795	
Remodeling index	1.18±0.1 2	1.18±0.1 3	1.15±0.1 4	0.897	0.310	0.528	

Ruptured vs Non-rupture

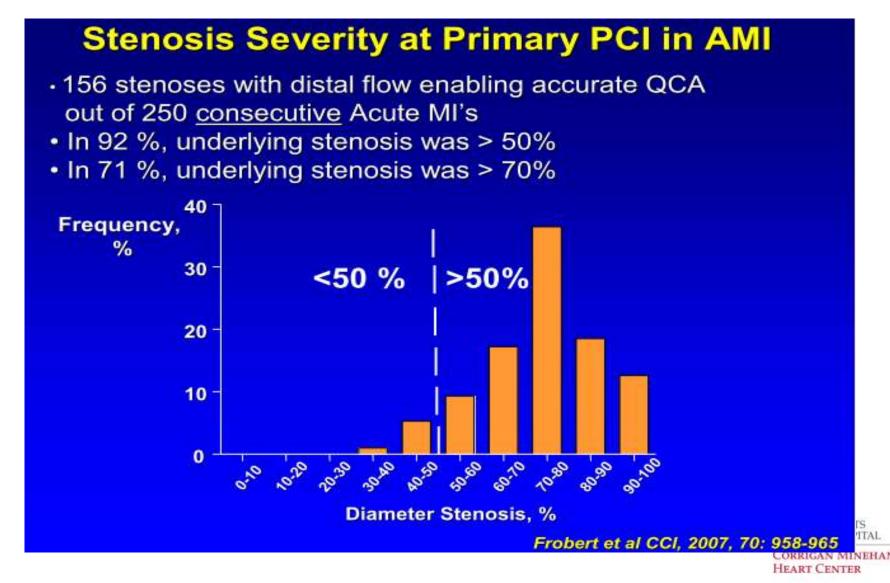
Figure 3

Clinical event vs Silent

Corrigan Minehan Heart Center

- 1. <u>Fibrous cap thickness</u> is a critical morphological discriminator between ruptured plaques and non-ruptured TCFA.
- 2. <u>Plaque burden and lumen area</u> are important morphological features of RCP.

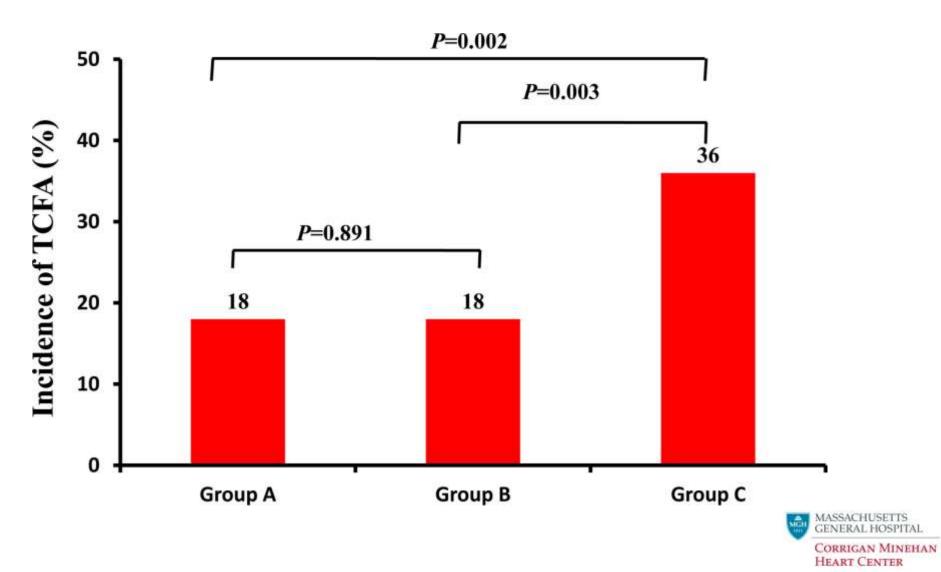
- Panvascular inflammation
- Fibrous cap
- Plaque burden
- Contemporary medical therapy


- 1. It was generally believed that ACS most frequently occurred at the site of mild to moderate coronary stenosis.
- However, <u>recent</u> studies have shown that most ACS occur at the site of <u>severe coronary</u> <u>stenosis</u>.

Old studies supporting mild stenosis

	Number of Patients	DelayAngio-MI
Ambrose et al/ ACC 1988	23	1 month to 7 years
Little et al. Circulation 1988	42	4 days to 6.3 years
Giroud et al. AJC 1992	92	1 month to 11 years
Moise et al. AJC 1984	116	39 months
Webster et al JACC 1990	30	55 months
Hackett et al AJC 1989	10	21 months
Total	313	Average 3. SREAL HOSPITAL BREVAL SPIEAL

Recent study supporting severe stenosis

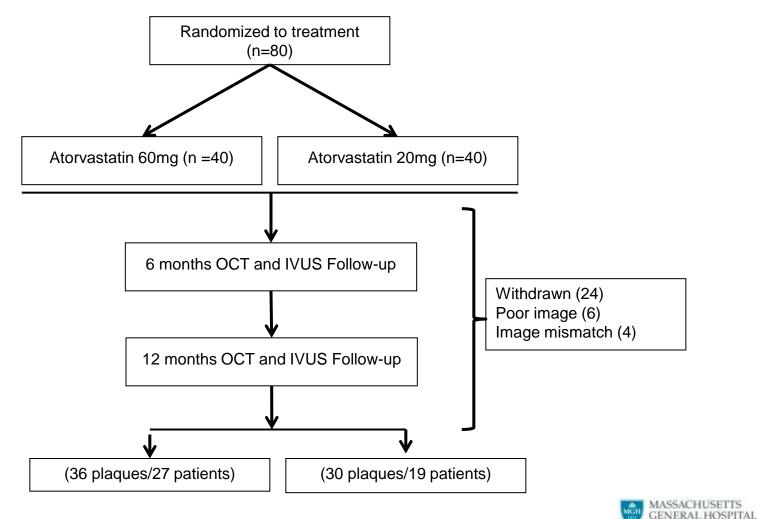


- 643 plaques with >30% angiographic diameter stenosis were detected from 255 subjects.
- Of 643 lesions,
 - Group A (30-49%DS)
 - Group B (50-69%DS)
 - Group C (>70%DS)

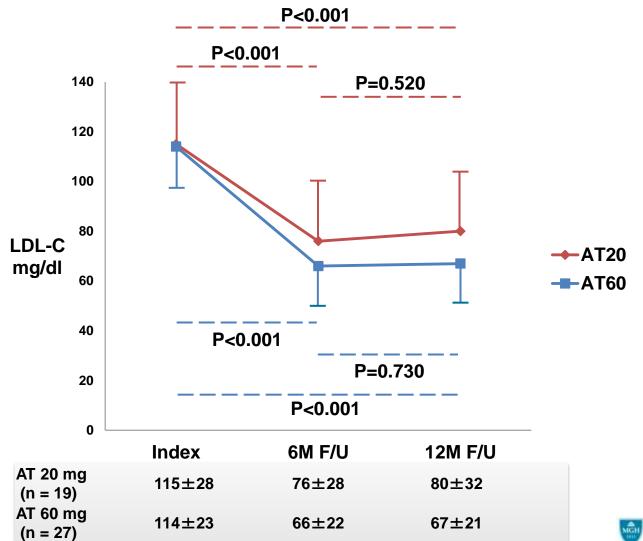
Prevalence of TCFA

OCT findings

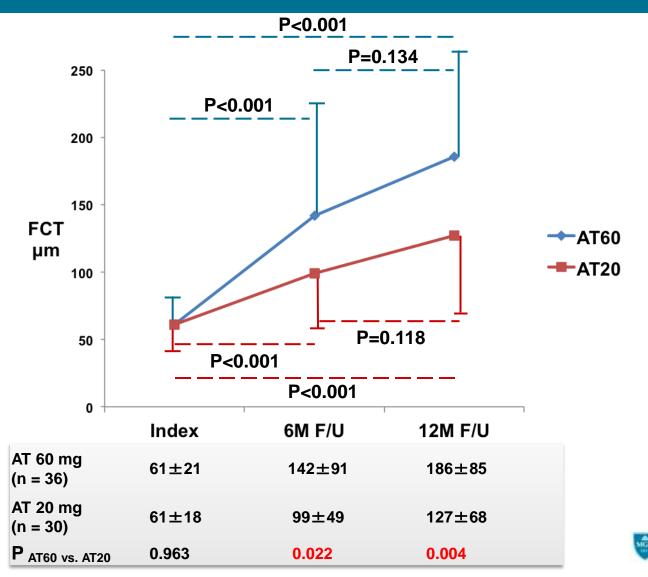
	Group A (n=58)	Group B (n=40)	Group C (n=33)	P A vs. B	P A vs. C	P B vs. C
FCT , μm	57±6.6	56±7.5	49±9.2	0.762	<0.001	0.001
Lipid arc, °	214±56	209±55	204±59	0.669	0.837	0.766
Lipid length, mm	9.4±4.6	10.5±5. 5	9.6±4.5	0.218	0.846	0.393
Microvessel	13(22)	15(38)	19(58)	0.141	<0.001	0.082
Cholesterol crystal	8(14)	10(25)	13(40)	0.048	0.002	0.429
Macrophage	44(76)	29(73)	28(85)	0.749	0.215	0.234
Calcification	25(43)	18(45)	14(42)	0.793	0.958	0.880


- 1. The relative prevalence of TCFA is twice as high in <u>severely stenotic lesions</u> compared to less severe lesions.
- 1. Furthermore, severely stenotic TCFA has more features of plaque vulnerability.
- 2. These findings suggest that severely stenotic TCFA lesions may lead to clinical events in the near future, while greater number of mild to moderate lesions may lead to adverse events during long-term follow-up.

- Panvascular inflammation
- Fibrous cap
- Plaque burden
- Contemporary medical therapy

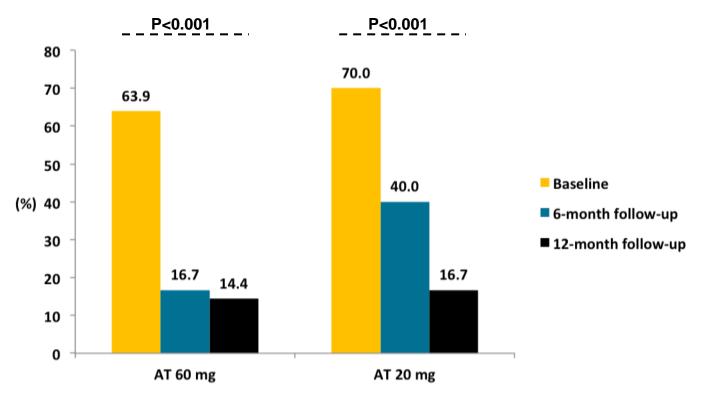


Study Design


CORRIGAN MINEHAN HEART CENTER

LDL-C Levels

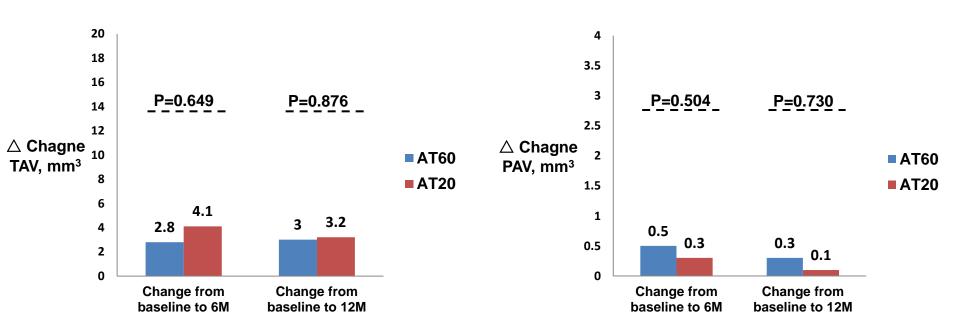
MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER


Fibrous Cap Thickness (FCT)

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

TCFA

• The prevalence of TCFA continuously decreased from baseline to 6 months and to 12 months in both groups (p<0.001).



IVUS findings

Absolute change in TAV

Absolute change in PAV

- 1. Both intensive and moderate statin therapy stabilized coronary plaques.
- 2. Intensive statin therapy induced more rapid and effective stabilization of lipid plaques.
- 3. No significant changes in plaque volume were observed over time regardless of intensity of statin therapy.

- Non-culprit lesions in ACS patients have <u>higher</u> <u>vulnerability</u>.
- <u>FCT</u> is a critical morphological discriminator for plaque rupture, while <u>plaque burden</u> and <u>lumen</u> <u>area</u> are important morphological features of clinical events.

 The relative prevalence of TCFA is twice as high in <u>severely stenotic lesions</u> compared to less severe lesions and severely stenotic TCFA has more features of <u>plaque vulnerability</u>.

 Intensive statin therapy induced more rapid and effective stabilization of lipid plaques.

Collaborators

Registry

21 sites

Fellows

Haibo Jia, MD Sining Hu, MD Lei Xing, MD, PhD Erika Yamamoto, MD, PhD Jiannan Dai, MD Kryzsztofs Bryniarski, MD Thomas Zanchin, MD Yoshiyasu Minami, MD, PhD Rocco Vergallo, MD Koji Kato, MD Taishi Yonetsu, MD SJ Kim, MD, PhD YS Cho, MD, PhD Jinwei Tian, MD Lei Gao, MD Tsunenati Soeda, MD

BWH

Peter Stone, MD

MIT

James Fujimoto, PhD Zhao Wang, PhD Aaron Aguirre, MD, PhD

Hirosaki Univ. Japan Takumi Higuma, MD PhD

Harbin Medical Univ. China Bo Yu, MD, PhD

Athens Medical School, Greece Christofus Stefanadis, MD, PhD

Univ. Texas Marc Feldman, MD PhD

Catholic Univ. Rome, Italy Philippo Crea, MD Luigi Biasucci, MD, PhD

Thank You

