Imaging Criteria for DES Optimization

Gary S. Mintz, MD Cardiovascular Research Foundation

IVUS Predictors of DES Early Thrombosis & Restenosis

	Early Thrombosis	Restenosis
Small MSA or underexpansion in stable lesions Small MLA in ACS/MI lesions (accounting for plaque/thrombus protrusion)	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al. Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sonoda et al. J Am Coll Cardiol 2004;43:1959- 63 Hong et al. Eur Heart J 2006;27:1305-10 Doi et al JACC Cardiovasc Interv. 2009;2:1269- 75 Fujii et al. Circulation 2004;109:1085-1088 Kang et al. Circ Cardiovasc Interv 2011;4:9-14 Choi et al. Am J Cardiol 2012;109:455-60 Song et al. Catheter Cardiovasc Interv 2014;83:873-8 Kang et al. PLoS One 2015;10(10):e0140421
Edge problems (geographic miss, secondary lesions, large plaque burden, dissections, etc)	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al., Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sakurai et al. Am J Cardiol 2005;96:1251-3 Liu et al. Am J Cardiol 2009;103:501-6 Costa et al, Am J Cardiol, 2008;101:1704-11 Kang et al. Am J Cardiol 2013;111:1408-14 Kobayashi et al. ACC2014
Stent length (>40mm)		•Hong et al. Eur Heart J 2006;27:1305-10

Sonoda et al. J Am Coll Cardiol 2004;43:1959-63

CRF CARDIOVASCULAR RESEARCH FOUNDATI

Predicting Freedom From Angiographic Restenosis with Second Generation DES at AMC

Song et al. Cathet Cardiovasc Interv 2014;83:873-8

ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation

By definition, sensitivity/specificity curve analysis "must" identify a single MSA that "best" separates events from no events. However, sensitivity and specificity are not of similar importance when predicting outcomes.

Predicting Freedom From Angiographic Restenosis with Second Generation DES at AMC

Song et al. Cathet Cardiovasc Interv 2014;83:873-8 🌔 🦳

ARDIOVASCULAR ESEARCH FOUNDATION t the heart of innovation

IVUS-XPL: Impact of stent optimization (in-stent MLA > distal reference)

Hong et al. JAMA 2015;314:2155-63

Criteria for stent underexpansion at the distal LMCA bifurcation (n=403)

- MACE-free survival was lower in pts with underexpansion vs those without underexpansion (89.4% vs 98.1%)
- TLR-free survival was lower in pts with underexpansion vs no underexpansion (90.9% vs 98.5%).
- Although acute malapposition was observed in 28 pts, malapposition was not related to MACE at follow-up.

Kang et al. Circulation Cardiovasc Interv. 2011;4:562-9 🌔

RDIOVASCULAR SEARCH FOUNDATION the heart of innovation

The Optimal Cutoff Value of Post-Procedural MSA to Predict a Follow-up MLA ≥4mm² After Bifurcation T-Stenting

Hahn et al. J Am Col Cardiol 2009;54:110-7

IVUS Predictors of Edge Restenosis after Second Generation DES

422 **R-ZES**

Sensitivity

0

0

20

Plaque burden=56.3% Sensitivity 67% Specificity 86% Plaque burden=57.3% Sensitivity 80% Specificity 87% Plaque Burden=54.2% Sensitivity 86% Specificity 80%

80

60

100 - specificity

100

Kang et al. Am J Cardiol 2013;111:1408-14

CRF CARDION

Plaque burden predictor of TCFA in 271 atherosclerotic lesions from 106 fresh coronary arteries in 54 patients at necropsy.

Inaba, unpublished

Edge Dissection in ADAPT-DES

1-year events	Dissection (159 pts)	No dissection (1903 pts)	P Value
MACE	11.48% (18)	7.97% (148)	0.097
Cardiac death	1.91% (3)	1.44% (26)	0.6
Peri-procedural MI	2.52% (4)	1.16% (22)	0.14
Clinically driven TLR	5.8% (9)	3.1% (68)	0.067
Stent Thrombosis	1.28% (2)	0.53% (10)	0.2

Lesions with 1-year TLR had a smaller effective lumen area at the dissection site (4.8 mm² [3.4-6.2] vs.6.7 mm² [4.8-9.2], p=0.03) compared to lesions without TLR; however, there was no difference in dissection length or dissection angle.

 By ROC curve analyses, only the effective lumen CSA at the dissection site predicted 1-year TLR with an optimal cut-off of 5.1 mm² (AUC of 0.73, p=0.05).

Kobayashi et al. unpublished

OPUS-CLASS (OCT Compared With IVUS in 3.0mm phantoms and in 100 pts)

- IVUS-MLD was significantly greater than OCT-MLD (mean difference of 0.18 mm)
- QCA-MLD was significantly smaller than OCT-MLD (mean difference of 0.10 mm).
- The difference between IVUS-MLA and OCT-MLA was significantly greater in nonstented vs stented segments (0.56±0.49 mm² vs. 0.25±0.87 mm²; p < 0.007).

Kubo et al. JACC Cardiovasc Imaging 2013;6:1095-104

OCT Criteria Tested in the CLIO-PCI II Registry

Edge dissection width >200µ

Stent malapposition distance >200µ

Thrombus thickness >500µ —

Residual stenosis adjacent to stent edge: MLA <4.5mm² in presence of plaque

In-stent MLA <4.5mm²

Prati et al. JACC Cardiovasc Imaging 2015;8:1297-305 CRF

929 pts (989 lesions) in CLI-OPI II registry MACE (death, MI, ST, or TLR in 12.2%) @ 1 yr

Independent predictors of MACE were in-stent MLA <4.5mm², proximal or distal reference narrowing, or distal edge dissection

Prati et al. JACC Cardiovasc Imaging 2015;8:1297-305 🕥 CRF

507 pts (588 lesions) in CLI-OPI ACS registry MACE (death, MI, ST, or TLR in 12.6%) @ 9 mos

Presence of at least one OCT finding was found to be an independent predictor of worse outcome (HR=4.05, CI 95% 1.8-9.0, p=0.001) - especially the presence of a residual intrastent plaque/thrombus protrusion (HR=2.96, CI 95% 1.4-6.3, p=0.005).

Prati et al. unpublished

Baseline OCT and 1 year follow-up (900 stents in 786 patients)

Independent predictors of 1 year events

	Device orie	TLR		
	OR	P-value	OR	P-value
Age, years			0.98	0.4
Male gender	3.13	0.068	36%	
BMS	1.75	0.005	1.80	0.002
Irregular protrusion	2.64	0.003	2.66	0.003
Small MSA	2.54	0.012	2.54	0.011

- Irregular protrusion = protrusion of material with an irregular surface (>100 microns) into the lumen between stent struts.
- Small MSA defined by ROC analysis = 5.0mm² for DES (AUC=0.63) and 5.6mm² for BMS (AUC=0.59)
- Neither edge dissection nor acute malapposition nor relative stent underexpansion predicted events at 1 year of follow-up

Soeda et al. Circulation 2015;132:1020-9

ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation

Although it was one of the original Colombo criteria, there is little or no data linking *isolated* acute stent malapposition to adverse clinical events including ST and restenosis.

- Stent malapposition was associated with *less* intimal hyperplasia the drug can cross small stent vessel-wall gaps
 - Hong et al, Circulation. 2006;113:414-9

• Steinberg et al, JACC Cardiovasc Intervent 2010;3:486-94

Kimura et al, Am J Cardiol . 2006;98:436-42

- Balakrishnan et al., Circulation 2005;111:2958-65
- In the integrated analysis of slow release formulation PES in TAXUS IV, V, & VI & TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trial, there was no effect of acute stent malapposition on MACE or ST within the first 9 mos – whether BMS or DES
 - Steinberg et al, JACC Cardiovasc Intervent 2010;3:486-94
- In HORIZONS-AMI, acute stent malapposition was detected in 33.8% of 68 lesions treated with PES and 38.7% of 24 lesions treated with BMS (p=0.7). There was no difference in MACE between pts with versus without acute stent malapposition in either BMS or PES cohorts; and acute malapposition was not a predictor of early ST
 - Guo et al. Circulation 2010;122:1077-84
 - Choi et al. Circ Cardiovasc Interv 2011;4:239-47
- Although acute malapposition was observed in 28/403 pts with LMCA lesions treated with DES implantation, malapposition was not related to MACE at follow-up.
 - Kang et al. Circ Cardiovasc Interv 2011;4:562-9
- Although acute malapposition was detected in 14.4% of 2072 pts (12.6% pf 2446 lesions) in ADAPT-DES, it was not associated with adverse events at either 30 days or 2 years.
 - Wang et al. Unpublished

Frequency of acute stent malapposition

	Study	#	IVUS	ОСТ
Steinberg et al. JACC Cardiovasc Interv 2010;3:486- 94	Combined TAXUS	1200	8%	
Guo et a. Circulation 2010;122:10-77-84	HORIZONS-AMI	263	36%	
Van der Hoven JACC Cardiovasc Interv 2008;1:192-201	MISSION-AMI	184	35%	
Wang et al, unpublished	ADAPT-DES	2446	13%	
Bezerra et al. JACC Cardiovasc Interv 2013;6:228- 36		26	42%	96%
Kubo et al. JACC Cardiovasc Imaging 2013;6:1095- 1104	OPUS-CLASS	100	14%	39%
Im et al. Circ Cardiovasc Interv 2014;7:88-96		356		62%
Kawamori et al. EHJ Cardiovasc Imaging 2013;14:865-75		40		65%
Shimamura et al. EHJ Cardiovasc Imaging 2015;16:23-8		77		100%
Soeda et al. Circulation 2015;132:1020-9		1001		39%
Prati et al. JACC Cardiovasc Imaging 2015;8:1297- 305	CLI-OPCI-II	1002		49%
Prati et al. unpublished	CLI-OPCI ACS	588		48%
Overall			14%	49%

Resolution of acute stent malapposition

	Study	IVUS		ОСТ	
		ASM	% resolution	ASM	% resolution
Steinberg et al. JACC Cardiovasc Interv 2010;3:486-94	Combined TAXUS	96	55%		
Guo et a. Circulation 2010;122:10-77-84	HORIZONS- AMI	94	39%		
Van der Hoven JACC Cardiovasc Interv 2008;1:192-201	MISSION- AMI	67	58%		
Im et al. Circ Cardiovasc Interv 2014;7:88-96				221	69%
Kawamori et al. EHJ Cardiovasc Imaging 2013;14:865-75				26	77%
Shimamura et al. EHJ Cardiovasc Imaging, In Press				77	68%
		257	50%	324	69%

Events related to acute stent malapposition

	Study		Follow-up	Acute malapposition	No acute malapposition
Steinberg et al. JACC Cardiovasc Interv 2010;3:486-94	Combined TAXUS	IVUS	9 mos	8.2% MACE	10.7% MACE
Van der Hoven JACC Cardiovasc Interv 2008;1:192-201	MISSION-AMI	IVUS	9 mos	0% ST	0% ST
Guo et a. Circulation 2010;122:10-77-84	HORIZONS- AMI	IVUS	13 mos	0% ST	0% ST
Wang et al. Unpublished	ADAPT-DES	IVUS	2 yrs	5.2% MACE (0.65% ST)	4.5% MACE (0.43% ST)
Soeda et al. Circulation 2015;132:1020-9		ост	1 yr	4.4% DoCE	4.8% DoCE
Prati et al. JACC Cardiovasc Imaging, in press	CLI-OPCI-II	ост	1 yr	13% MACE	10% MACE
Prati. Unpublished	CLI-OPCI- ACS	ост	9 mos	12.8% MACE	12.4% MACE

Criteria for DES Optimization

- Good expansion
- Absence of geographical miss (covering large plaque burden, lipid rich plaque, etc)
- No complications
- Not greater stent length
- Not plaque/thrombus protrusion unless it results in a small lumen area (primarily in ACS patients)
- Not malapposition unless it is associated with underexpansion
- Not asymmetry unless it is associated with underexpansion

