OCT-guided BRS implantation

Yoshinobu Onuma, MD, PhD
Erasmus MC/ Cardialysis, Rotterdam , The Netherlands
Yohei Sotomi, MD
Academic Medical Center, University of Amsterdam, the Netherlands
Pannipa Suwannasom
Evelyn Regar
Erasmus MC, Rotterdam , The Netherlands
Patrick W. Serruys, MD, PhD Imperial college, London, UK

OCT (Imaging) Guidance for BRS

Preprocedure:

- Sizing
- Landing zone
- Preparation

Post implantation:

- Scaffold expansion
- Eccentricity/ Symmetry
- Malapposition

Case 1: suboptimal positioning resulting in uncorrectable malapposition

Case 1:suboptimal positioning

Post Proc

Dilemma: The vessel size is $>4.0 \mathrm{~mm}$, while the device size is 3.0 mm ...The operator is aware of ISA, but considering the expansion limit of 3.5 mm , the operator cannot correct malapposition by postdilatation.

18M

Preprocedural sizing and accurate positioning is important!

\#2. Underexpansion and Late Thrombosis -161 days after implantation, 2 days after cessation of DAPT

Scaffold thrombosis on 161 days E

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B ($\mathrm{n}=1248$)

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B ($\mathrm{n}=1248$)

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B ($\mathrm{n}=1248$)

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B ($\mathrm{n}=1248$)

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B ($\mathrm{n}=1248$)

2.5 mm Device Only* Target Lesion Failure

	Absorb $\mathrm{N}=285$	Xience $\mathrm{N}=164$	Relative Risk $[95 \% \mathrm{CI}]$	p- value
TLF	8.5%	9.3%	$0.91[0.49,1.69]$	0.77
- Cardiac death	0.4%	0.6%	$0.57[0.04,9.06]$	1.00
- TV-MI	7.0%	6.8%	$1.04[0.51,2.11]$	0.92
- ID-TLR	4.2%	4.3%	$0.98[0.39,2.43]$	0.96

ABsors i৷ Outcomes by QCA RVD 2.25 mm

OCT (Imaging) Guidance for BRS

Preprocedure:

- Sizing
- Landing zone
- Preparation

Post implantation:

- Scaffold expansion
- Eccentricity/ Symmetry
- Malapposition

Pre implantation

In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-B ${ }^{\text {TM }}$): comparison with a conventional two-dimensional system (CAAS II ${ }^{\mathrm{TM}}$) and with special reference to optical coherence tomography

Keiichi Tsuchida, MD, PhD; Willem J. van der Giessen, MD, PhD; Mark Patterson, MRCP; Shuzou Tanimoto, MD; Héctor M. García-García, MD, MSc; Evelyn Regar, MD, PhD; Jurgen M. R. Ligthart, BSc; Anne-Marie Maugenest; Gio Maatrijk; Jolanda J. Wentzel, PhD; Patrick W. Serruys*, MD, PhD, FACC, FESC

Diameter

Pre implantation

In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp- $\mathrm{B}^{\text {TM }}$): comparison with a conventional two-dimensional system (CAAS IITM) and with special reference to optical coherence tomography

Keiichi Tsuchida, MD, PhD; Willem J. van der Giessen, MD, PhD; Mark Patterson, MRCP;
Shuzou Tanimoto, MD; Héctor M. García-García, MD, MSc; Evelyn Regar, MD, PhD;
Jurgen M. R. Ligthart, BSc; Anne-Marie Maugenest; Gio Maatrijk; Jolanda J. Wentzel, PhD;
Patrick W. Serruys*, MD, PhD, FACC, FESC

> QCA underestimates the lumen dimension.

OCT provides the correct lumen dimension.

Pre-procedure
Area assessment
IVUS > OCT = real value > QCA

\# Preprocedural sizing: which modality to use

 OCT-guided PCI

\# Preprocedural sizing: which modality to use

 OCT-guided PCI

\# Preprocedural sizing: which modality to use

 OCT-guided PCI
\# Preprocedural sizing: which modality to use
However, coregistration with OCT and Angiogram is necessary...

Proximal ref 3.53 mm

Coregitration is now possible on Console

In both arms acute gain was not affected by the circumferential distribution of calcium

Arc of calcium: 207.8° (3 quadrant)

OCT (Imaging) Guidance for BRS

Preprocedure:

- Sizing
- Landing zone
- Preparation

Post implantation:

- Scaffold expansion
- Eccentricity/ Symmetry
- Malapposition

In-device acute gain in randomized trials

Data present in mean \pm SD	Absorb	EES	P-value
ABSORB II	$1.15 \pm 0.4<1.46 \pm 0.4$	<0.001	
ABSORB III	$1.45 \pm 0.45<1.59 \pm 0.44$	<0.001	
ABSORB Japan	$1.46 \pm 0.40<1.65 \pm 0.40$	<0.0001	
ABSORB China	$1.51 \pm 0.03<1.59 \pm 0.03$	0.04	

\#1. Acute performance: OCT guidance might improve the performances...

ABSORB Biodegradable Stents Versus
Mattesini et al. JACC 2014

Second-Generation Metal Stents

A Comparison Study of 100 Complex Lesions Treated Under OCT Guidance
Table 4. Optical Coherence Tomography Findings ($\mathrm{N}=124$)

$$
\text { BVS }(n=63) \quad \text { DES }(n=61) \quad p \text { Value }
$$

Mean stent area, mm^{2}
Minimal stent area, mm^{2}
Mean lumen area, mm^{2}
Minimal lumen area, $\mathrm{mm}^{2 *}$
Median stent diameter, mm
Minimal stent diameter, mm

$7.3(2.3)$	$7.5(1.6)$	0.51
$5.9(1.9)$	$=$	$5.8(1.5)$

IVUS assessment for asymmetry/eccentricity

Minimum and Maximum diameter per device through the gravitational center of the lumen

Cross sections of the device with the minimum and maximum diameter through the gravitational center of the lumen, showing different eccentricity indexes.

Symmetry index
$=(3.37-2.52) / 3.37=0.25$

Eccentricity index (cross-section)

Projected max
stent diameter
$=2.64$
Eccentricity index
$=2.46 / 2.64=0.93$

Geometrical morphologies post-implantation

Concentric \& symmetric

Concentric \& asymmetric

Lumen area $=4.27 \mathrm{~mm}^{2}$

Eccentricity index
= 1.88/2.90
$=0.65$

Eccentric \& asymmetric

Distribution geometrical morphology according to type of devices in ABSORB II-trial and the incidence of DoCE over 1 year follow-up.

Eccentricity index

Absorb without DoCE
Absorb with DoCEMetallic EES without DoCE
Metallic EES with DoCE

Edge vascular response: truly serial (4 times) OCT assessment

Step-down

Step-up

5-years

Conclusion

- Considering the limited expansion capability of the polymeric scaffold and the risk of underexpansion, preprocedural sizing is of paramount importance.
- Be aware of difference in imaging modality:
QCA < OCT = reality < IVUS
- Coregistration of intravascular imaging on angiography is useful to guide precise implantation based on IVUS/OCT.
- OCT is useful to optimize the acute expansion of scaffold. $2^{\text {nd }}$ postdilatation should be performed if optimal expansion is not achieved. Asymmetric expansion should be avoided.
- Initial step-up/step-down will be resolved in long term as the device resorbs.
- Clinical benefit of OCT guidance should be tested in prospective trial with predefined "criteria" of guidance .

