

Optimisation of BVS Implantation in Real World Experience - Imaging or Angiography Guided?

The 4th Revolution in PCI Symposium – Leave Nothing Behind TCTAP - April, 27 August 2016

Nigel S Jepson

Director of Coronary Care Unit, Prince of Wales Hospital Director of Cardiac Catheterization Laboratories, Eastern Heart Clinic, Sydney, Australia

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below -

Affiliation/Financial Relationship

- 1. Grant/Research support
- 2. Advisory/Honoraria
- 3. Major Stock Shareholder/Equity
- 4. Royalty income
- 5.Ownership/Founder
- 6. Intellectual/Property Rights
- 7. Other Financial Benefit

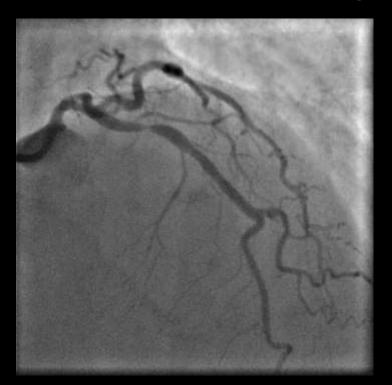
Company

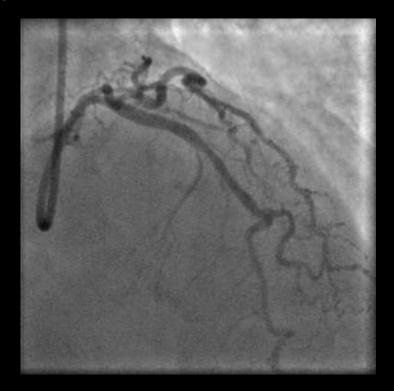
Abbott Vascular, St Jude Medical

None

No conflict of interest with reference to this talk or meeting

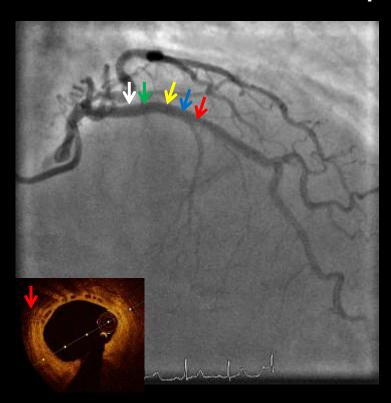
ABSORB BVS in Real-world Practice – Optimising Outcomes

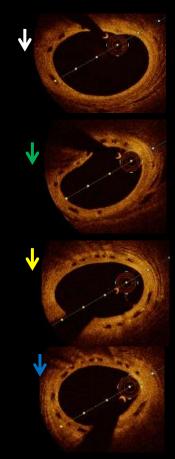

- Appreciate novel device features (BUT its still a "stent" acutely!)
 - → 5 key aspects (Ps) of scaffold implantation
- Learning-curve do not start with complex disease
- Meticulous technique (sizing, preparation, post-dilatation)
- Prolonged DAPT in complex disease
- Liberal OCT use



ABSORB BVS – On-label Indication

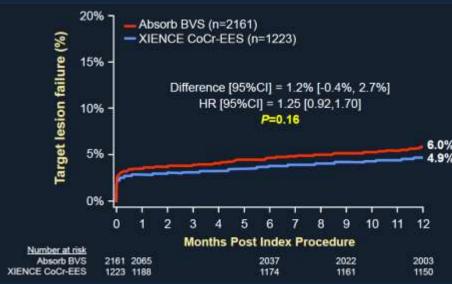
62 F, SAP, Angio-guided Implantation


- **>**3.5 x 18 mm Absorb
- ≥3.75 mm NC



ABSORB BVS – Late OCT insights

30 mth post Absorb BVS

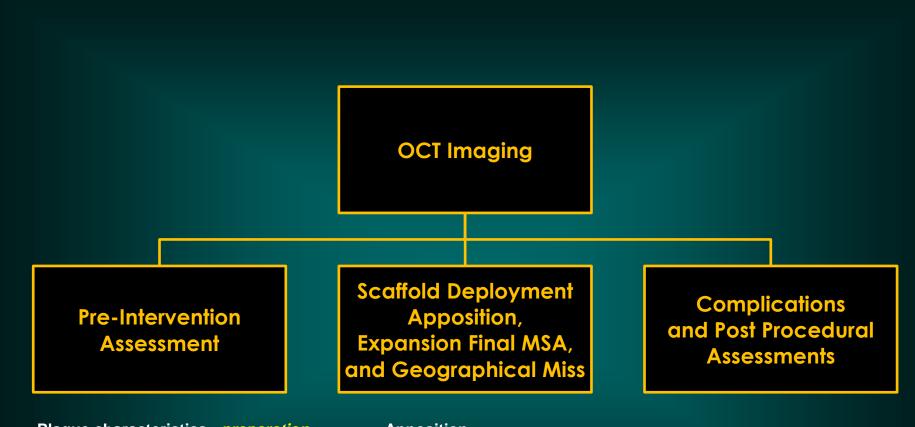

ABSORB 1-Year Meta-analysis Outcomes in 3389 'On-label' patients

ABSORB II, ABSORB Japan, ABSORB China, ABSORB III

PoCE: Death, MI or Revascularization (pooled)

DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled)

IVUS or OCT guidance/procedure – 23.9 % Absorb vs 20.3% Xience Co-Cr EES P<0.02

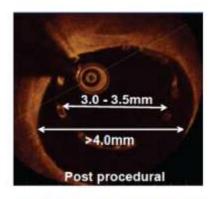


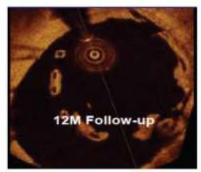
What Advantages over Angiographic Guidance?

- Plaque characteristics preparation
- Identify proximal and distal reference segments to select scaffold length
- Measure vessel diameter to select scaffold size esp 2.5 mm

- Apposition
- Expansion final MSA
- Lesion coverage (geographic miss?)
- Edge dissections
- Tissue protrusion/thrombus

OCT offers advantages - SIZING


Small malapposition

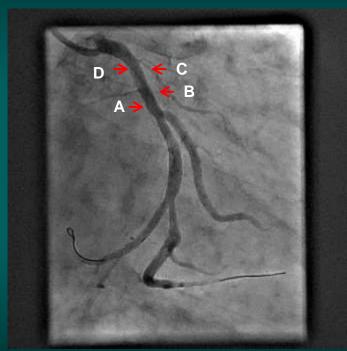

- Correctable by post dilatation
- · Resolve at FUP

Large malapposition

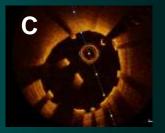
- Uncorresctable (persistent at FU)
- · Overexpansion by a large balloon
- → Acute disruption

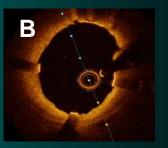
Max Diameter at landing zone (angio)	<2.5mm	2.5-3.3mm	>3.3mm	120
Edge dissection	61.5%	33.3%	11.1%	p 0.05
>5% Malapposition	7.7%	36.7%	66.7%	p 0.02

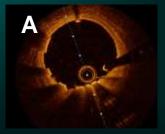
Gomez-Lara J et al Eurointerv. 2012; 8:214



Bioresorbable Scaffolds – Sizing Malapposition cannot be detected by angiography

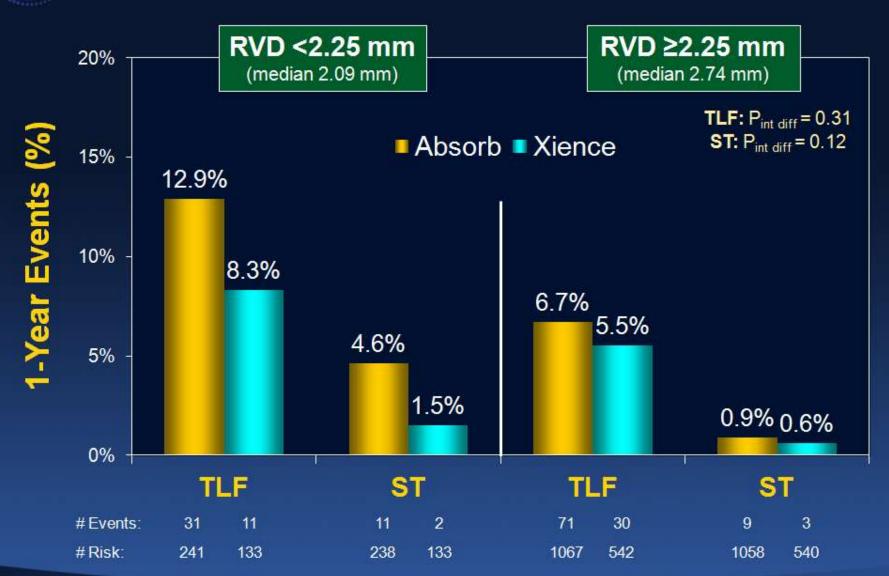

3.0 x 18 mm REVA FANTOM Scaffold





What Have We Learnt?

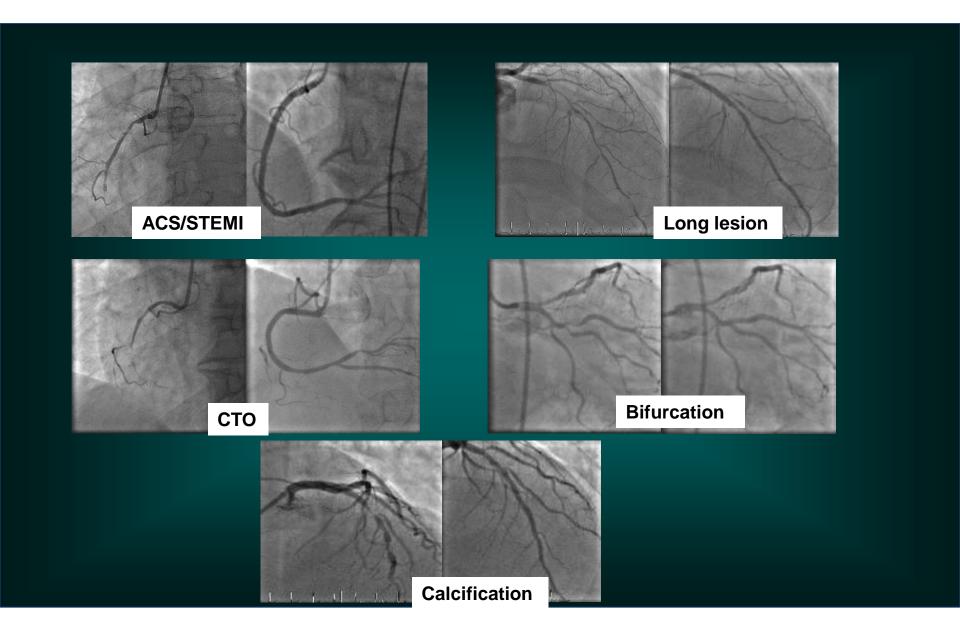
Accurate Sizing and Optimal Implantation in Small Vessels with 2.5 mm Scaffolds


ABSORB 1-Year Meta-analysis - Outcomes ABSORB II, ABSORB Japan, ABSORB China, ABSORB III

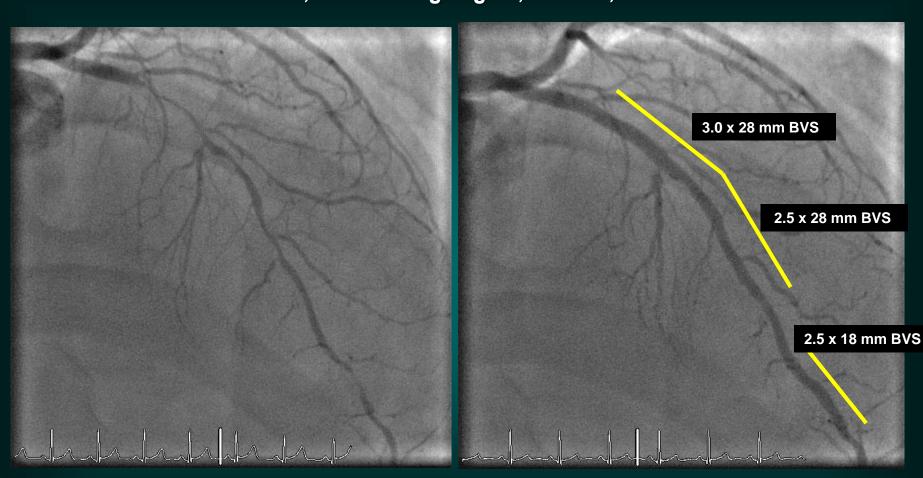
	Relative risk (95% CI)	p value
Patient-oriented composite endpo or revascularisation)	oint (death, myocard	lial infarction,
Diabetes present	1.39 (1.15-1.68)	0-0008
Previous cardiac intervention	1.40 (1.16-1.69)	0-0006
Number of target lesions (≥2 vs 1)	1.45 (1.16-1.82)	0-001
Any lesion with minimal luminal diameter <median (0-93="" mm)*<="" td=""><td>1-37 (1-13-1-68)</td><td>0-002</td></median>	1-37 (1-13-1-68)	0-002
Any lesion with reference vessel diameter <median (2.65="" mm)*<="" td=""><td>1-23 (1-01-1-51)</td><td>0-04</td></median>	1-23 (1-01-1-51)	0-04
Any ACC/AHA class B2 or C lesion (vs class A or B1)*	1-38 (1-11-1-73)	0-003
BVS (vs CoCr-EES)	1.10 (0.90-1.34)	0-29
cardiac death, target vessel-related ischaemia-driven target lesion revi Diabetes present		on, or 0-002
Previous cardiac intervention	1.36 (1.19-2.04)	0-002
Any lesion with minimum luminal	1.37 (1.03-1.82)	0.03
diameter <median (0.93="" mm)*<="" td=""><td>13/ (103-102)</td><td>0.03</td></median>	13/ (103-102)	0.03
Any lesion with reference vessel diameter <median (2-65="" mm)*<="" td=""><td>1.52 (1.14-2.03)</td><td>0-005</td></median>	1.52 (1.14-2.03)	0-005
Any ACC/AHA class B2 or Clesion (vs class A or B1)*	1-65 (1-19-2-28)	0-002
BVS (vs CoCr-EES)	1.23 (0.92-1.64)	0-14
Myocardial infarction, all		
Diabetes present	1.61 (1.20-2.15)	0-002
Previous cardiac intervention	1.60 (1.19-2.15)	0-002
Number of target lesions (≥2 vs 1)	1.47 (1.03-2.08)	0-04
Any lesion with minimum luminal diameter <median (0.93="" mm)*<="" td=""><td>1-42 (1-04-1-95)</td><td>0-03</td></median>	1-42 (1-04-1-95)	0-03
Any lesion with reference vessel diameter <median (2-65="" mm)*<="" td=""><td>1-57 (1-13-2-16)</td><td>0-007</td></median>	1-57 (1-13-2-16)	0-007
	1.68 (1.18-2.41)	0-003
Any ACC/AHA class B2 or C lesion (vs class A or B1)*	1.00 (1.10-2.41)	

- Independent baseline predictors of ischaemic events at 1 year by logistic regression
- Any lesion with reference vessel diametermedian (2.65mm) predictive of
 - POCE (death, MI or revasc)
 - DOCE/TLF (cardiac death, TV-MI, ID-TLR)
 - All MI

Outcomes by QCA RVD 2.25 mm

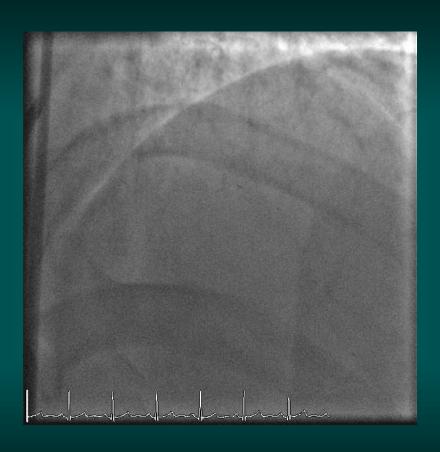


Absorb BVS Implantation – Real-world Disease



Diffuse, Long Segment Disease – Angiographic Guided BVS Implantation

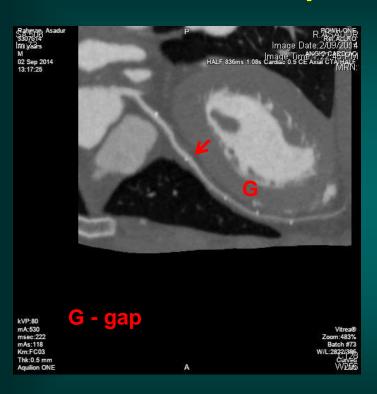
36 Male, 2/12 limiting angina, Smoker, + FH

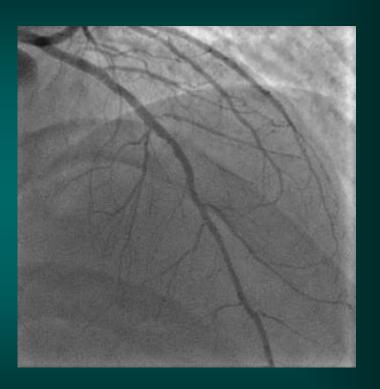


Diffuse, Long Segment Disease – Angiographic Guided BVS Implantation

36 Male, 2/12 limiting angina, Smoker, + FH

POW/EHC Absorb Registry - Case # 11




Diffuse, Long Segment Disease – Angiographic Guided BVS Implantation

36 Male, 2/12 limiting angina, Smoker, + FH

30 month F/up - CTCA and invasive

POW/EHC Absorb Registry - Case # 11

Base-line Demographics - Dec 2010 - Dec 2015

N	295 (312 procedures)
Age (yrs/range)	59 (18-83)
Male (%)	76
DM (%)	20
Hypertension (%)	73
Prior MI (%)	19
Hyperlipidaemia (%)	85
CKD (%)	7
Prior PCI (%)	21
Prior CABG (%)	9

Procedural Details

CTO (%)	7.5
Long lesions (%)	29
Bifurcations (%)	19
Moderate/severe calcification (%)	26
B2/C lesion complexity(%)	57

Procedural Details (3)

Pre-dilatation (%)	100
Scaffold overlap (%)	27
Multi-vessel BVS (%)	13
Total scaffolds (%)	472
Scaffolds/patient (n/range)	1.6 (1-5)
OCT (%)	18
Rotablator/scoring balloon (%)	4
NC balloon post-dilatation (%)	99

Clinical Outcomes

100 % 30 d, 73% 12 mth, 49% 24 mth		
Peri-procedural non-Q MI n (%)	9 (3.1)	
Deaths n (%)	3 (1.0)	
Cardiac Deaths n (%)	1 (0.3)	
TVR n (%)	9 (3.1)	
TLR n (%)	7 (2.4)	
MACE n (%)	18 (6.1)	
Scaffold thromboses – Definite/probable n (%)	3 (1.0)	
Scaffold thromboses – Possible n (%)	1 (0.3)	
MI (spontaneous) n (%)	3 (1.0)	

EBC 2014, CSANZ 2015

Clinical Outcomes – First 100 pts 12 mths

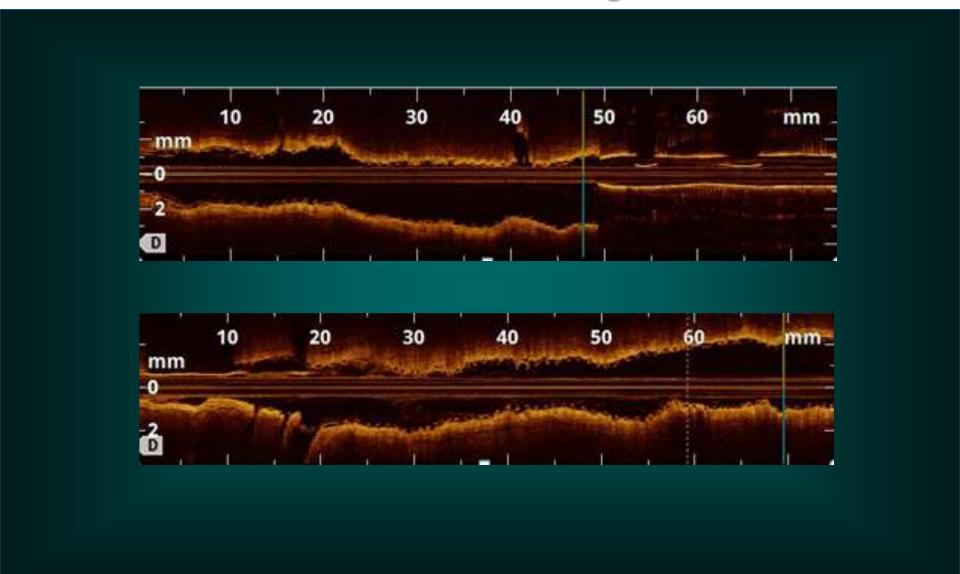
152 lesions, 167 scaffolds, mean age 62.1 (19-83) yrs	In-hospital	30 days	12 months
Deaths n	0	0	0
Non-fatal MI Q n	0	0	1
Non-fatal MI non-Q n	0	0	1
TVR n	0	0	6
TLR n	0	0	4
Scaffold thromboses n	0	0	1
Scaffold dislodgement n	0	0	0
MACE n	0	0	4

ABSORB POWH Registry – Case # 201 50 M, STEMI – OCT guided

- ASA, Prasugrel, UFH Thrombectomy + POBA
- 3.0 x 28mm, 3.0 x 28 mm, 3.5 x 28mm + 3.5 x 28 mm BVS HP NB balloon
- Provisional PL/PDA bifurcation step kiss

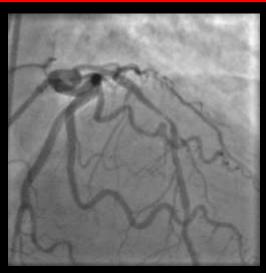
ABSORB POWH Registry – Case # 201 50 M, STEMI – OCT guided

S

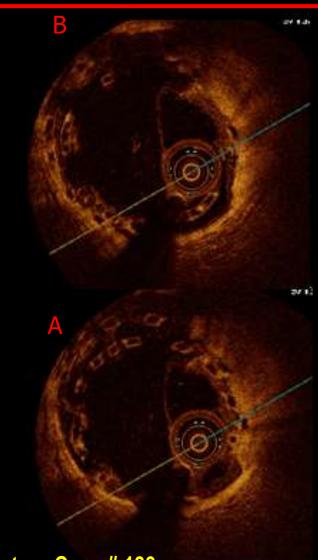


- ASA, Prasugrel, UFH Thrombectomy + POBA
- 3.0 x 28mm, 3.0 x 28 mm, 3.5 x 28mm + 3.5 x 28 mm BVS HP NB balloon
- Provisional PL/PDA bifurcation step kiss

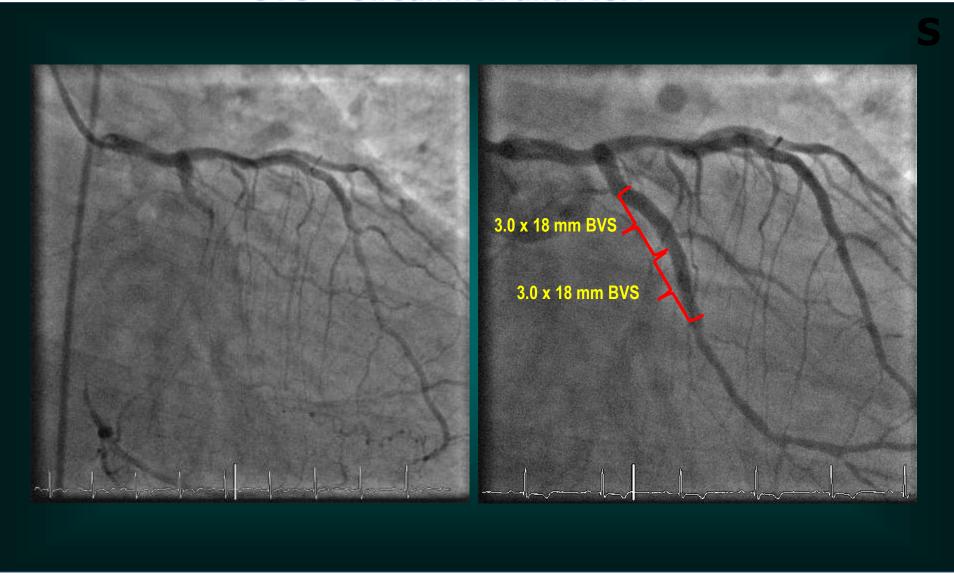
ABSORB POWH Registry – Case # 201 50 M, STEMI – OCT guided

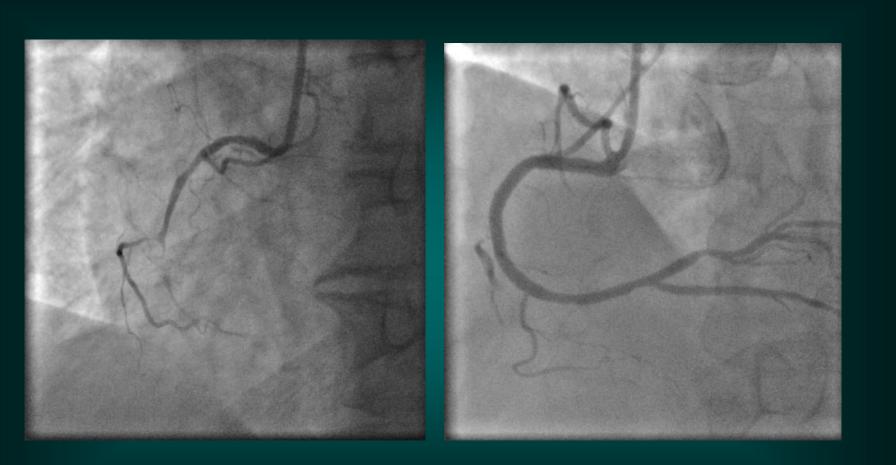

What Have We Learnt?

Scaffold Overlap and Long lesions

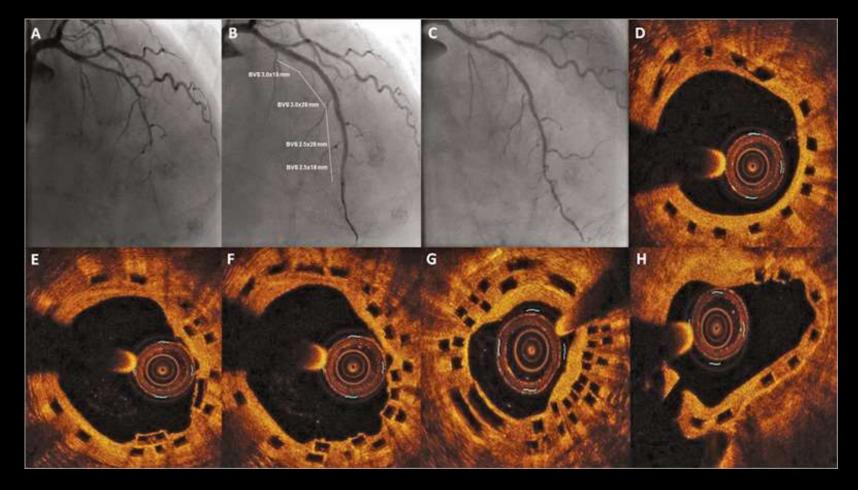


Absorb BVS Scaffold – Long Overlap and Malapposition


 $3.5 \times 28 \text{ mm} + 3.0 \times 18 \text{ mm} \text{ BVS}$


ABSORB POWH Registry – Case # 83 (47M) CTO – Circumflex and RCA

ABSORB POWH Registry – Case # 83 (47M)



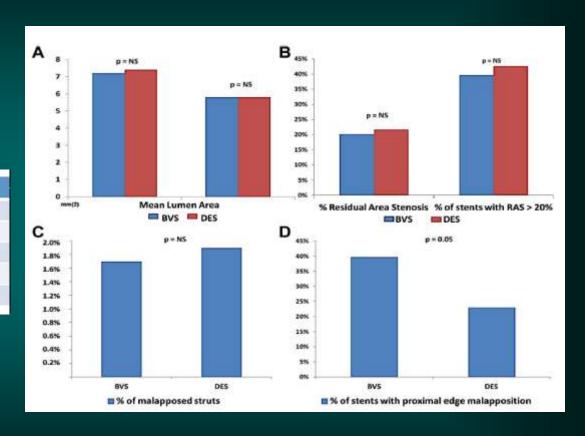
Two BVS 3.5 x 28 mm Scaffolds
Post-dilated 3.5/3.75 mm NC balloons

Absorb BVS Scaffold – Long Overlap with Late OCT

EuroIntervention 2015;11:e1 published online e-article June 2015 "Full plastic jacket": 18-month follow-up after implantation of multiple overlapping bioresorbable vascular scaffolds

ABSORB Scaffolds vs Second-Generation DES

A Comparison Study of 100 Complex Lesion treated Under OCT Guidance


ABSORB Biodegradable Stents Versus Second-Generation Metal Stents

A Comparison Study of 100 Complex Lesions Treated Under OCT Guidance

Alemin Matterini, MD," | Girel G. Secro, MD," | Giznai Dall'Ara, MD," Maneo Ghione, MD," Joan C. Rama-Menchan, MD," Alemandra Lupi, MD," Nicola Vicconte, MD," Alettir C. Linday, MD, PriD," Rarii De Silve, MD, PriD," Nicola Fein, PtiD, Tora Nagararma, MD, Estaffira Valente, MD, | Antonio Colombo, MD, PtiD, Carlo D: Mario, MD, PtiD"

London, United Kingdom; Florence, Novers, and Miles, Daly, and Singapore

	BVS (n=50)	DES(n=50)	P
Lesion lenght, mm	24.7 (14.2)	25.1 (10.6)	0.86
Calcified	31 (62.0)	37 (74.0)	0.28
Ostial	7 (14.0)	5 (10.0)	0.76
Bifurcation	17 (34.0)	23 (46.0)	0.30
In-stent restenosis	6 (12.0)	3 (6.0)	0.48

What Have We Learnt?

Bifurcation lesions

In-vivo Evaluation of Provisional Strategy for Absorb BVS in Bifurcation lesions – OCT Analysis

SB strut coverage by OCT n=24

- Absorb BVS vs EES
- POT vs SB opening + Final POT (step kissing)

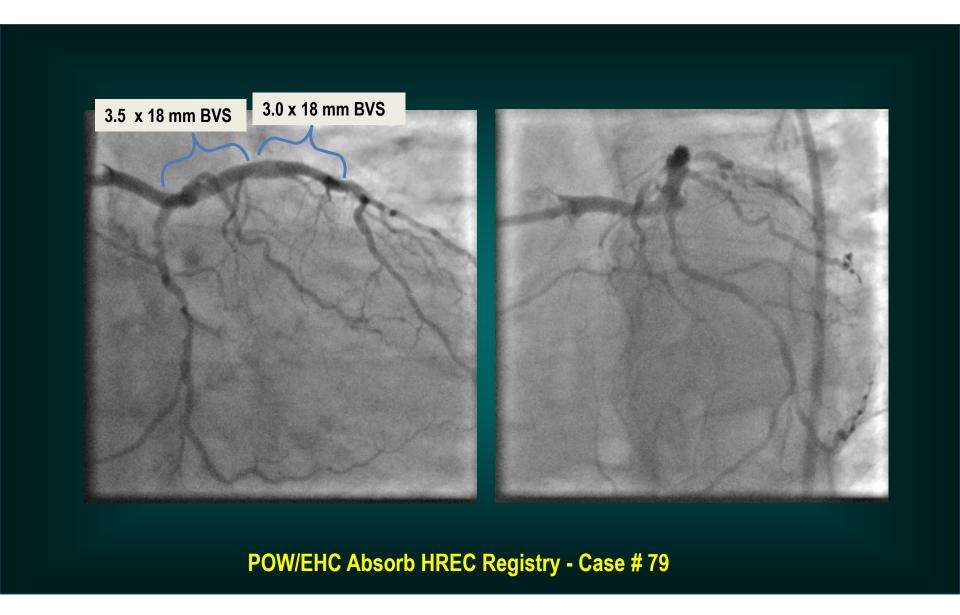
Jepson N, Robaei R, Foin N

In-vivo Evaluation of Provisional Strategy for Absorb BVS in Bifurcation lesions – OCT Analysis

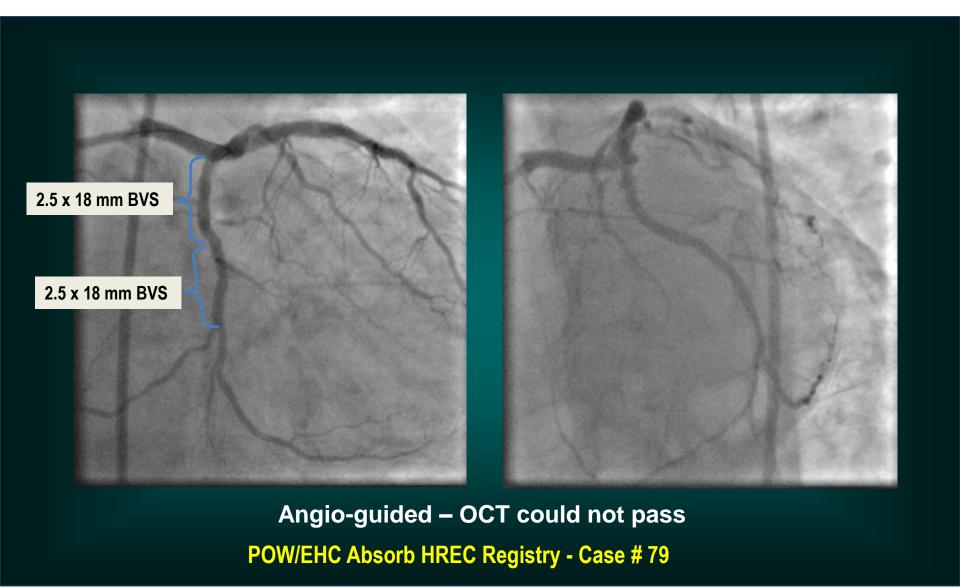
SB strut coverage by OCT (Absorb BVS vs EES)

	Xience		Absorb BVS	
	POT	SBO + POT	POT	SBO + POT
Malapposed strut in bifurcation (%)	26.4	17.6	17.7	12.3
Mal-apposed struts along entire device length (%)	9.3	3.6	3.9	3.3

No cases of scaffold/stent deformation, fracture or intra-luminal defects

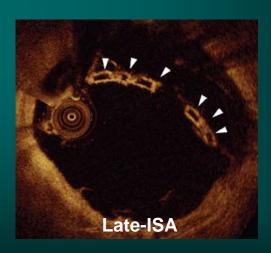

What Have We Learnt?

Tortuosity and Calcification


56 Male, unstable angina, hypertension, +FH

56 Male, unstable angina, hypertension, +FH

56 Male, unstable angina, hypertension, +FH 12 mth angiographic follow-up



What Have We Learnt?

Scaffold Failure

Scaffold Failure

Angiographic and Optical Coherence Tomography Insights Into Bioresorbable Scaffold Thrombosis

Single-Center Experience

Antonios Karanasos, MD, PhD; Nicolas Van Mieghem, MD, PhD; Nienke van Ditzhuijzen, MSc; Cordula Felix, MD; Joost Daemen, MD, PhD; Anouchska Autar, MD; Yoshinobu Onuma, MD, PhD; Mie Kurata, MD, PhD; Roberto Diletti, MD; Marco Valgimigli, MD, PhD; Floris Kauer, MD; Heleen van Beusekom, MD, PhD; Peter de Jaegere, MD, PhD; Felix Zijlstra, MD, PhD; Robert-Jan van Geuns, MD, PhD; Evelyn Regar, MD, PhD

Main mechanisms of both early and late BVS thrombosis

- Incomplete lesion coverage
- Under expansion
- Malapposition

Scaffold Failure

Angiographic and Optical Coherence Tomography Insights Into Bioresorbable Scaffold Thrombosis Single-Center Experience

Antonios Karanasos, MD, PhD; Nicolas Van Mieghem, MD, PhD; Nienke van Ditzhuijzen, MSc; Cordula Felix, MD; Joost Daemen, MD, PhD; Anouchska Autar, MD; Yoshinobu Onuma, MD, PhD; Mie Kurata, MD, PhD; Roberto Diletti, MD; Marco Valgimigli, MD, PhD; Floris Kauer, MD; Heleen van Beusekom, MD, PhD; Peter de Jaegere, MD, PhD; Felix Zijlstra, MD, PhD; Robert-Jan van Geuns, MD, PhD; Evelyn Regar, MD, PhD

OCT reveals scaffold thrombosis associated with implantation technique

DEVICE FAILURE or OPERATOR FAILURE

OCT Imaging with BRS Therapy -

- Excellent results can be gained with BVS in a practice of predominant angiographic guidance in Real-world disease however OCT provides invaluable adjunctive insights
- Excellent imaging of strut/lumen interface (IVUS plaque:media volume, vessel area)
- Guide vessel preparation pre-BRS implant (plaque composition/distribution) and direct scaffold diameter, length and landing zones
- Ensure optimal expansion and apposition post-BRS deployment
- Resolve ambiguous angiographic appearance during/after implantation

When to use OCT — in an absence of randomized data

- OCT indications as per DES planning and intra-procedural guidance
- Uncertainty in vessel sizing and final appearance
- Diffuse, small vessel disease
- Complex interventions long lesions/overlaps, calcification, bifurcations, ISR
- Liberal use early in BVS experience
- BVS failure (scaffold thrombosis, restenosis)

Thank you for your attention

