Vulnerable Plaque Detection by CTA Opportunity to Prevent MI and SCD

James A. Goldstein MD Director of Research and Education Dept of Cardiovascular Medicine William Beaumont Hospital

Can we Use Imaging to Prevent MI?

1.2 million MI/annum 300,000 SCD Most from Lipid-Rich Plaques

These LCP lesions Do Not develop Overnight!

VP Hypothesis Satisfying "Koch's Postulates"

Anthrax Spores

Identify VP as Culprit in ACS Patients

Prove VP Induce Future ACS Events

Prove that Rx (PCI-Medical) Improves Outcomes

Establish that CTA Screen can "At Risk" Pts

Hallmarks of a Plaque Suspected to be Vulnerable

Increased plaque volume

Lipid core

Expansive Remodeling

Neovascularization & intraplaque hemorrhage

Adventitial vasa vasorum proliferation Intraplaque hemorrhage

Thin cap

Inflammation

PROSPECT: Event Rates According to TCFA Role of IVUS-VH

Stone GW et al. N Engl J Med 2011;364:226-235.

CTA Morphologic Features of "High Risk" and Disrupted Plaques

- Bulky Low Attenuation Plaque (LAP)
- Positive Remodeling
- Minimal MLA
- Napkin Ring Sign
- Intra-Plaque Dye Penetration (IDP)
- Ulceration

Late Fibroatheroma: LCP "Napkin-Ring Sign"

Donnelly, P. et al. J Am Coll Cardiol Img 2010;3:876-880

(A) Histo: Thick fibrous cap (black arrows) and large necrotic core (*)

(B) OFDI: Thick fibrous cap (white arrows) and large necrotic core (*).

(C) IVUS : Heterogeneous plaque.with echolucent core

(D) CTA: Noncalcified plaque , with central low attenuation area (necrotic core*) and rim of high CT attenuation (corresponding to fibrous plaque tissue)

"Napkin-ring sign"

CTA IN ACS

Motoyama S et al. JACC 2007;50:319

Bulky, Low Attenuation, Positively Remodeled

March 2008

April 2009

10001 10001 10001 7.0.1 1252, wrmshild CID 60531

EID-94 EDT: 18-27 07-APR-3008 OFDI

i limman/ litery 7.0.2 1254_217 CEX.

CTA in ACS High Risk Plaques (HRPs) LAP, Positively Remodeled

Motoyama S et al. JACC 2007;50:319

Motoyama S, et al. JACC 2015;66(4):337-46

Napkin-Ring Sign and Subsequent ACS

Otsuka, et al. JACC Imag 2013;6(4):448

Disrupted and "Vulnerable" Plaques by CTA

Bilolikar A, Goldstein JA Eur Heart J CV Imaging 2016;17:247-259

LAP, Plaque Ulceration and Intraplaque Dye Penetration (IDP)

Plaque Disruption by Coronary CT Angiography

Madder and Goldstein Circ Cardiovasc Imaging 2011;4:105-113

Patient with ACS and Plaque Ulceration

Bilolikar A, Goldstein JA Eur Heart J Cardiovasc Imaging 2016;17:247-259

Late Fibroatheroma with Intraplaque Hemorrhage

(A)Histopath: Intraplaque hemorrhage (black arrowheads)
(B) OCT: Inhomogeneous plaque .
(C) IVUS: Unable to depict intraplaque hemorrhage.
(D) CTA: Intraplaque contrast accumulation.

Donnelly, P. et al. J Am Coll Cardiol Img 2010;3:876-880

Plaque Ulceration and Intraplaque Dye Penetration (IDP)

Madder & Goldstein Circ Cardiovasc Imaging 2011;4:105-113

68 yo Female with Acute IMI January 12, 2012

3 Months Prior: "Atypical CP" November 4, 2011

aVF

ш

Bilolikar A, Goldstein JA Eur Heart J CV Imaging 2016;17:247-259 Mechanisms of Disrupted Plaques "Inside Out" or "Outside In"

"Inside Out" : Erosions and Frank Ruptures

"Outside In": Leaky Vaso Vasorum?

Plaque Disruption "Inside Out"

A) Plaque Rupture

(B) Plaque Erosion

(C) Calcified Nodule

Higuma T, et al. JACC Intv. 2015;8:1166-76

Plaque Disruption "Inside Out"

Vasa Vasorum Proliferation & Intimal Neovascularization

Taruya A, et al. JACC 2015;65(23):2469-77

Kwon T-G, et al. JACC 2015;65(23):2478-80

Multiple Complex Plaques in Acute MI

Goldstein JA et al. NEJM 2000;343:915

50% Cases had Unstable Plaque Remote from Culprit

ACS with Multiple Unstable Plaques

Bilolikar A, Goldstein JA Eur Heart J CV Imaging 2016;17:247-259

CTA evidence of at least one vs. multiple disrupted plaques in stable clinical patients vs ACS

Bilolikar A, Goldstein JA Eur Heart J Cardiovasc Imaging 2016;17:247-259

Connecting the Dots CTA LAP and Lipid Core Plaque

Connecting the Dots: 54 Year Old w Inferior-Posterior MI

Angiogram After PTCA with Small Balloon Flow Restored Made

Madder et al JACC Intervent 2013;6:838-46

LCP by NIRS

Madder and Goldstein Circ CV Imaging 4:105: 2011

64 year old presents with STEMI in March 2012

Unstable angina October 2012

CTA for Plaque Detection and Characterization

CTA Provides Novel 3-D Snapshot: Lumen + Intramural

Delineates Presence or Absence of CAD: Fabulous!

Quantitates Lumen % Stenosis & MLD: But not as Well as Angio or IVUS/OCT

 Plaque Character: Volume, Eccentricity, Attenuation, Disruption But not=Resolution as IVUS/OCT
Can Delineate Frankly Disrupted Plaques

Potential to Identify "Vulnerable Plaques"