

April 28-May1, 2015 Seoul. Korea

Bioaresorbable Vascular Scaffold (BVS) for Bifurcation PCI

I Sheiban

University of Turin

Director Interventional Cardiology Pederzoli Hospital Pechiera del Garda (Verona) / Italy

E-mail : profsheiban@gmail.com

BVS Undergone Clinical Evaluation

Company / Device	Design of the biorsorbable device	Strut thickness, (µ m)	Polymer / Drug	Absorption time	Late loss, (mm)
Kyoto Medical/ Igaki-Tamai	33335	170	PLLA	2 years (y)	0.48 (6m)
Biotronik / DREAMS	111288 11288 1	125	Mg alloy (AMS-4) / sirolimus	4 to 6 months (m)	0.68 (6m)*
Abbott / ABSORB BVS	ABBBBBBBBBBBBBB	150	PLLA / everolimus	2у	0.1 <mark>9</mark> (6m)
Reva Medical / ReSolve	STERIE SW	200	Tyrosine poly carbonate with iodine / sirolimus abluminal	2у	1.81 (6m)
-/ BTI		200	Salicylic acid into polymer (PLA or adipic acid) / sirolimus	6m	NA
Elixir / DESolve		150	PLLA / novolimus	1 to 2y	NA

Potential Advanteges :

- The "liberation" of the treated vessel from its "metallic cage" and the subsequent reactivation of the physiological processes of vasomotion, vascular remodelling and late lumen enlargement.
- The potential elimination/integration into the vessel wall of the polymeric struts from jailed side-branches after the completion of the bioresorption process.
- The superior conformability and flexibility compared to conventional metallic stents, thereby leading to a less altered distribution of the tissue biomechanics and preservation of the vessel geometry.
- The potential long-term beneficial edge vascular response.
- The elimination of the late acquired or persistent malapposition, which has been implicated in causing thrombotic events with conventional metallic devices.

Side branch jailing &BVS

- The SB jailing during provisional T-stenting with the BVS seems to have a benign behaviour compared to metallic stents.
- At 2-year follow up post BVS implantation, the polymeric struts disappear at the side branch ostium, with evidence of integration into the underlying tissue and, in some cases, causing a membranous neocarina.
- Feasibility of crossing the polymeric struts of the BVS using 3D OCT

Limitations

- Reduced radial strength
- Possible fracture

Strut thickness

2.5 mm balloon in side branch taken to nominal pressure

2.5 mm balloon in side branch taken to nominal pressure, deflated, then 3.0 x 18 mm delivery system balloon taken to 16 atm for post-dilatation

After Kissing balloon

Pressures above the safe threshold will cause strut fractures with possible severe scaffold disruption

BRS; Risk of strut fractures

Figure 4. Mini-KBPD at low (5 atm) and high (>15 atm) balloon pressures. Panel A is a photograph of mini-KBPD with 3.0 mm NC balloons inflated slowly to 5 atm in a 3.0 mm Absorb scaffold showing that there were no strut fractures. The yellow arrow indicates a strut that is restraining balloon expansion at this pressure. In panel B, the simultaneous balloon inflation pressure was increased to 15 atm in the same scaffold. The SB balloon had prolapsed forward ("melon seeding") and the scaffold strut no longer restrained balloon expansion because, as shown in panel C, struts had fractured (red arrows). The photograph D shows a scaffold severely damaged by high-pressure mini-KBPD with multiple fractures.

Ormiston et al. EuroIntervention; 2014, may: 10 online (published ahead of print)

Clinical Data ?

Bifurcation Lesion Treated with Provisional Onescaffold Approach

The main vessel (left anterior descending) is treated with two bioresorbable vascular scaffolds (BVS) (3.0 x 18.0 mm at the site of the bifurcation and 3.5 x 18.0 mm proximally. The ostium of the side branch is re-crossed and ballooned with a 2.5 x 12.0 mm balloon. The good final angiographic result is confirmed by two- and three-dimensional optical coherence tomography (OCT).

R Diletti and N M Van MieghemInterventional Cardiology Review, 2013;8(2):93–5

Three-dimensional Optical Coherence Tomography Reconstruction of the Carina Treated with a Two-scaffold Culotte Technique

The ostium of the side branch (within the light blue circle) illustrates the multiple scaffold layers with complete coverage of the carina. *coronary guidewire in the mother branch and side branch.

mage courtesy of Robert-Jan van Geuns.

Milan Experience in BVS in Bifurcation lesions

	Bifurcation	Utilized technique		Stent type		
	number (n = 64)			Main branch	Side branch	FKBI
Single-stenting	52	-		BVS	-	7
Double-stenting as a crossover from provisional strategy	1	ТАР		BVS	DES (BVS could not pass through MB-BVS strut)	0
Systematic double-stenting	11	7 T-stenting	6	BVS	BVS	2
			1	BVS	DES	0
		2 4 mini-crush 2	2	BVS	BVS	1
			BVS	DES	0	
Stenting only at SB-ostium	5	-		-	BVS	0

A. Latib , EBC meeting ,

Provisional T Stenting with BVS

		Baseline and	iographic dat	a n=26	
		Location of the lesion, n (%)			
		LAD-Dg LCx-Cx RCA	17 6 (3 ((65) 23) 12)	
Clinical data	n=26	Type of lesion, n (%	⁄ 0)		
Age, years	59 ± 12	{1.1. 1 }	11	(42)	
Male gender	22 (85)	{1,1,0}	6 (23)	
Hypertension	12 (48)	{1,0,1}	0	(0)	
Diabetes mellitus	6 (23)	{ 0,1,1 } { 1,0.0 }) S	19) (8) 16 (61 9	
Hypercholesterolemia	12 (48)	{0,1,0}	2	(8)	
Current smoking	15 (60)	{0,0,1}	0	(0)	
Unstable	22 (85)	QCA	Main vessel	Side branch	
Multivessel disease	8 (30)	Lesion length, mm	21.9 ± 8.30	4.8 ± 2.1	
Left ventricular EF	63 ± 13	Prox. reference diameter	2.97 ± 0.37		
Data are expresed as n (%)		Distal reference diameter	2.53 ± 0.38	2.42 ± 0.3	
		MLD, mm	1.13 ± 0.61	1.38 ± 0.41	
		DS,%	62 ± 19	42 ± 16	
		*BVS dia	meter was selected according	to proximal vessel diameter	

A. Medina , EBC Meeting , London ; 2013

Provisional T Stenting with BVS

Primary success (one patient needed SB stenting)	100%			
IN HOSPITAL	KB n=26			
Non-Q-wave MI	1 (4%)*			
Death	0			
Sub-acute BVS thrombosis (PAMI)	1 (4%)			
FOLLOW-UP (7 \pm 3 months)				
Recurrent infarction	0			
Death (all causes)	0			
Need of TLR	0			
BVS thrombosis	0			
Total MACE	2 (8%)			

* troponin elevation within 48 h post-procedure of 5 ULN with either symptoms of myocardial ischemia, new ischemic ECG changes, or documented complications during the procedure

Angio-CT was performed at follow-up (n = 25). No restenosis

Medina 0,0,1 Bifurcation -BVS

Vessel / Lesion characteristics	N = 8
DIA	2
Ostial Cx	3
OM	3
Calcification (moderate/heavy)	3
Vessel reference diameter	2.7 ± 0.2 mm
Lesion length	11.2 ± 6.0 mm
Diameter stenosis	75.8 ± 13.4 mm
Scaffold diameter	2.9 ± 0.4 mm
Scaffold length	21.3 ± 4.7 mm
IVUS / OCT	4

4-month Cinical FU

n=43	Discharge – end of FU
All cause death	1
Cardiac death	0
Myocardial infarction	0
Target lesion revascularization	0
Target vessel revascularization	0
Stent thrombosis (any as of ARC)	0
Target vessel failure	0

M Lesiak, Poznan, Poland at EBC Meeting, London

() JACC Journals [JACC: Cardiovascular Imaging] Volume 7, Issue 8, August 2014

Delayed Disruption of a Bioresorbable Vascular Scaffold

Toru Naganuma, MD; Azeem Latib, MD; Vasileios F. Panoulas, MD; Katsumasa Sato, MD; Tadashi Miyazaki, MD; Antonio Colombo, MD J Am <u>Coll Cardiol Img</u>. 2014;7(8):845-847. doi:10.1016/j.jcmg.2014.01.021

A 59-year-old man underwent percutaneous coronary intervention for a focal lesion at the ostium of the left circumflex artery (LCX) with a 3.5×12.0 mm everolimus-eluting Absorb bioresorbable vascular scaffold (BVS) (Abbott Vascular, Santa Clara, California). This was followed by post-dilation with a 3.5-mm double-layered OPN NC (SIS Medical AG, Winterthur, Switzerland), which allowed super high-pressure dilation (presumed balloon diameter: 3.85 mm at 30 atm) (Figure 1ab). Post-procedural optical coherence tomography (OCT) showed excellent results without evidence of scaffold disruption (Figure 1ab). At 6 months, the patient underwent repeat coronary angiography due to recurrence of exertional angina. This showed severe focal restenosis of the BVS at LCX ostium (Figure 1ab). The OCT revealed significant neointimal hyperplasia within a disrupted (Figure 1ab) and severely recoiled scaffold (reduction in scaffold area from 7.45 mm² to 5.01 mm² in Figure 1ab). Because of a concomitant significant lesion at distal left main artery ([LM]; lumen area: 3.98 mm²), the T-stenting technique was successfully performed with a 3.5×18.0 mm BVS from the LM into the left anterior descending artery and a 3.0×12.0 mm drug-eluting stent in the LCX ostium.

Early (before 6 months), late (6-12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial

Shimpei Nakatmi¹, MD; Yoshinobu Omma¹*, MD; Yuki Ishibashi¹, MD, PhD; Takashi Muramatsu¹, MD, PhD; Javaid Iqbal¹, MRCP, PhD; Yao-Jun Zhang¹, MD, PhD; Robert-Jan van Geuns¹, MD, PhD; John A. Ormiston², MBChB, PhD; Patrick W. Serruys¹, MD, PhD; on behalf of the ABSORB Cohort B investigators

1. Thorazzentez, Erannia Medical Centez, Rottenkan, The Netherlands; 2. Auckland City Hospital, Auckland, New Zooland

GUEST EDITOR: Rafiel Boyar, MD, DSc, MPH, Director, Ranham Realth Care Campus, Wimon's Division Dr Phillip and Sara Gotlieb Chair, Department of Medicine and Riomedical Engineering, Technion, Israel

KEYWORDS

Abstract

bioresoriable
scatloid
ewroilmus
iniuwscular
inuging
long-term follow-up
restourais

Aims: The long-term follow-up of the first-in-man ABSORB Cohort B trial showed that angiographic binary restenosis can occur early, late or very late after implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS). Since the mechanical support of the scaffold decreases during bioresorption, the mechanism of in-segment restenosis (ISR) of the Absorb BVS might be different from that of metallic stents. The objective of the current analysis was to review the multimodulity imaging of cases with binary restenosis to elucidate the mechanism of ISR after Absorb BVS implantation.

Methods and results: The ABSORB Cohort B teial enrolled 101 patients with a maximum of two drawsor coronary lesions. At the three-year imaging and clinical follow-up, there were six cases of in-segment binary restensisis: two early ISR (~6 months), one late ISR (6-12 months) and three very late ISR (>12 months). Three of these ISR cases seemed to be induced by anatomical or procedural factors. In the other three cases, intravascular imaging (IVUS/OCT) demonstrated that the main mechanism of restensis was significant intra-scaffold tissue growth, while the structural circularity and diameter of the scaffold were not affected.

Conclusions: Early and late restenois after implantation of the Absorb hioresoftable scaffold could be related to anatomical or procedural factors. In this small cohort of patients late or very late restenois seems to be attributed to pure intra-scaffold tissue growth without extrinsic encroachment of the scaffold.

From the company :

ABBOT Recommendations for the BVS ABSORB

DO NOT PERFORM THIS TECHNIQUE!

- Simultaneous balloon inflations will cause mechanical disruption of proximal scaffold rings, if kissing balloons are over-sized
- Mechanical Disruption of <u>Ring</u> = *impact* radial strength
- Mechanical Disruption of <u>Link</u> = no impact on radial strength

*Kissing balloon technique is considered off-label and techniques referenced must be indicated by physician only.

Absorb is authorized for sale in CE Mark and certain independently regulated countries outside the United States. Please check the regulatory status of the device in your geographic location prior to distribution. Not to be reproduced, distributed or excerpted. ©2013 Abbott. All rights reserved AP2939100-OUS Rev. A 10/13

10

Final Remarks

- Bench tests on BVS in bifurcations confirm the fragility of the device. Damage or fracture of the stent can occur easily
- Need to lear more if connection fracture may impact the outcome.. Surely stent integrity is important;
- In case of use BVS for bifurcation treatment (off label Use) be *extremely cautious* when crossing the struts and in selecting the device (wires, balloon m stents...) the strategy, follow the guidelines for BVS implantation, keep it easy (no need for complex procedures).
- Clinical data on BVS in bifurcation are very limited and do not allow to draw conclusions, Need for more solid data