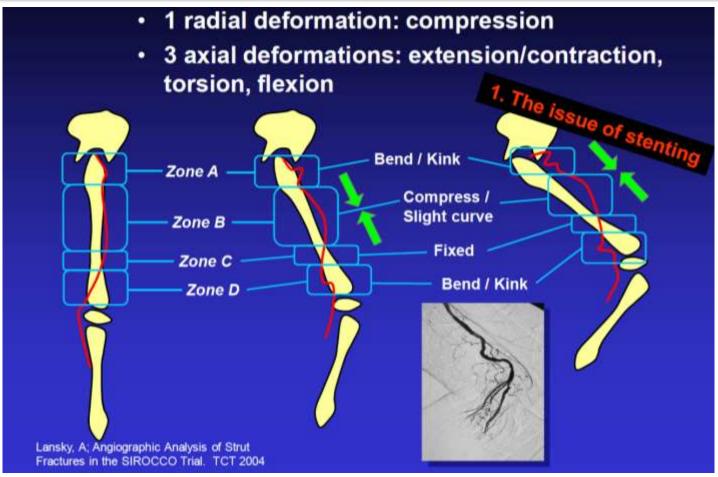
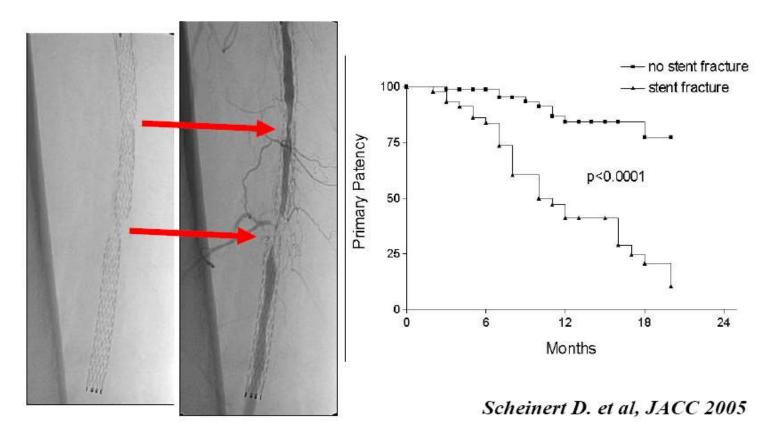
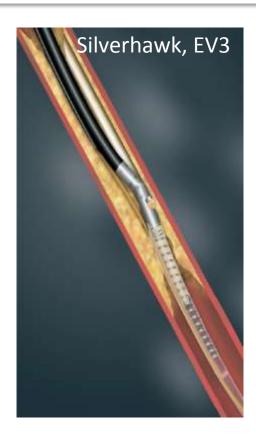
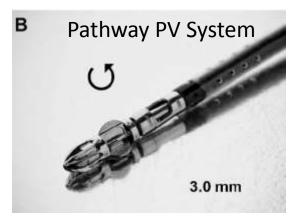
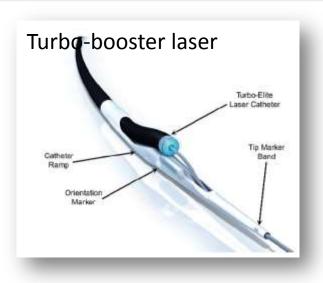

Clinical Application and Use of Rotational Atherectomy System


Theoretical Advantage of Atherectomy


Risk of Stent Fractures


Stent Fracture and Restenosis in SFA




Atherectomy Devices

Benefits of Atherectomy

- Debulking (Plaque burden reduction) & luminal gain
- Removal of calcium and thrombus
- Less dissection, less need for stenting
- Side branch preservation
- Improved drug delivery

Catheter Evolution

JETSTREAM[™] Atherectomy System

SYSTEM EVOLUTION Continuous innovation to support your success

JETSTREAM

JETSTREAM G2™

JETSTREAM G2 NXT

JETSTREAM G3"

JETSTREAM G3 GTI

JETSTREAM Navitus™

JETSTREAM Navitus" L JETSTREAM" XC/SC

September 2008

February 2009

2009

2010

December 2010

March 2011

2012

2013

- · First commercially available Pathway Medical product
- Expandable blades
- · Aspiration port integrated into distal cutter
- 8 F introducer sheath

Distal Cutter -10 Flute Design

- Aspiration port moved proximal of cutting blades
- Macerator added
- 10% increase in
- · Approved for

Macerator Added to Aspiration Port to Decrease Size of Plaque Before it is

- Pebax outer shaft and stainless steel hypotube (reduced OD, compared to
- aspiration efficiency¹
- thrombectomy

Aspirated

- earlier generation
- designs) · 7 F compatibility
- Improved trackability (compared to earlier generation designs)

- 5-flute distal cutter design
- Increased torque (power)
- 54% Increase in differential cutting efficiency1
- 11% increase in aspiration efficiency2

Distal Cutter -5 Flute Design

- Increased ease of use/ reliability (compared to JETSTREAM G3)
- New liner over driveline
- Improved distal bushing
- Enhanced GW management
- Improved User Interface

- · Robust Bushing and Distal Liner (same as GTI)
- Elimination of bushing tail related wire sticking
- Protection against thrombus stick
- Durable liner with improved aspiration.
- Guidewire management enhancements for smoother operation over the wire

- Largest JetStream Catheter
- 2.4 mm / 3.4 mm
- 30% larger lumens3 Shortened Coupler
- Improved performance in torturous anatomy
- Navitus technology integrated
- Identical liner and bushing technology
- Guidewire management enhancements

- Entire portfolio redesign
- New ergonomic POD design
- -32% smaller than previous
- Redesigned user interface
- Improved wire GARD simplifies wire management
- New package and POD design reduces environmental footprint

All cited trademarks are the property of their respective owners. CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device. Information for the use only in countries with applicable health authority product registrations

^{1.} Compared to JETSTREAM G2 NXT in blades down during bench testing

^{2.} Compared to JETSTREAM G2 NXT in bench testing

^{3.} Data on file report EV09194

JETSTREAM™ Atherectomy System is manufactured and distributed in EU by Bayer Interventional

Pathway PVD Trial

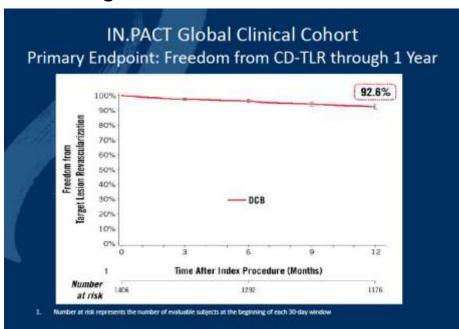
+ CLINICAL INVESTIGATION

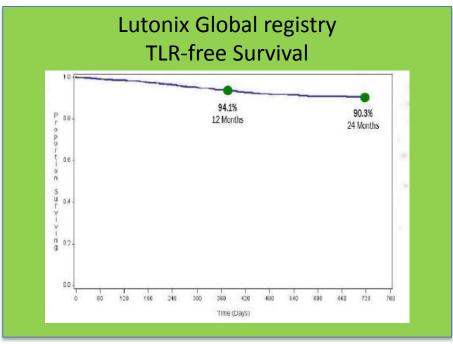
One-Year Outcome of Percutaneous Rotational
Atherectomy With Aspiration in Infrainguinal Peripheral
Arterial Occlusive Disease: The Multicenter Pathway
PVD Trial

Thomas Zeiler, MD¹; Hans Krankenberg, MD³; Hermann Steinkamp, MD³; Aljoscha Restan, MD¹; Sebastian Sixt, MD¹; Andrej Sehmidt, MD³; Horst Sievert, MD³; Erich Minar, MD³; Marc Bosiers, MD¹; Patrick Peeters, MD³; Jörn O. Balzer, MD³; William Grey, MD¹³, Thilo Tübler, MD³; Christian Wisagott, MD¹¹; Uwe Schwarzwälder, MD¹; and Dierk Scheinert, MD³

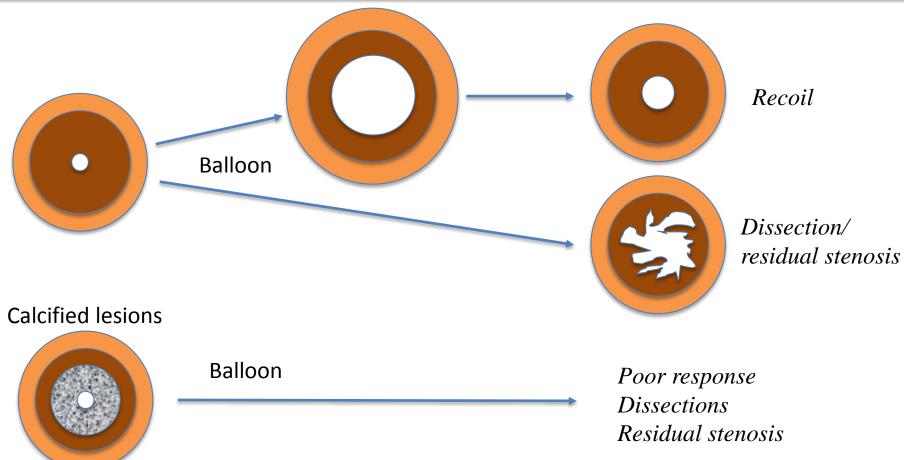
*Department of Angiology, Heart-Centre Bad Krozingen, Germany, *Hamburg University Cardiovascular Center, Hamburg, Germany, *Department of Radiology, Rad Cross Clinics, Berlin, Germany, *Department of Angiology, Heart Center & Park Clinic, Leipzig, Germany, *Cardio Vascular Center Clinic, Frankfurt, Germany, *Department of Angiology, University Hospital Vienna, Austria, *Department of Vascular and Endovascular Surgery, AZ Sint-Blasius, Dendermonde, Belgium, *Department of Vascular and Endovascular Surgery, Imelda Cardiovascular Center, Bonheiden, Belgium, *Department for Radiology and Nuclear Medicine, Catholic Clinic, Mainz, Germany, *Ocenter for Interventional Vascular Therapy, Columbia University Medical Center/New York Presbyterian Hospital, New York, New York, USA, **Department of Radiology, Wastküstenklinikum, Heide, Germany.

Purpose: To report a safety and efficacy study of a novel rotational atherectomy system with aspisation capabilities for the treatment of intrainguinal arterial lesions. Methods: From February 2006 to January 2007, 172 patients (55 women; mean age 72 years, range 51-93; 47% disbetics) with Patherford class 1-5 lower limb isohernia were enrolled at 9 study sites. Inclusion of teria were at respectancies stendard > 70% and up to 10 cm long in the femoropopliteal segment or up to 3 cm long in the infrapopitast vessels (reference vessel dismeter 3.8-5.0 mm). In the study, 218 lesions imean length 2.7 cmi were treated with the Pathway PV System, including total occlusions (31%), lesions with a moderate to high calcium score (\$1%), and post-engloplasty (non-stent) restenotic lesions. (15%). The primary study endpoint was the 30-day major adverse event (MAE) rate. Results: Device success was 99% (205/210 lesiens). MAE at 30 days was 1% (2 preplanned emputations). Clinically driven target lesion revascularization rates at 5 and 12 months were 15% (25/172) and 26% (42/162), respectively. The 1-year restenosis rate was 38.2% based on cupiex imaging. The anice-brachial index increased significantly from 0.59::0.21 at baseline to 0.82::0.27 (p<0.05) at 12 months. Mean Rutherford class improved from 3.0:10.9 at baseline to 1.5::1.3 at 1 ymr (p=0.05).


- 172 patients with 210 lesions
- Lesion location:
 - SFA (64%)
 - Popliteal artery (28%)
 - Tibial artery (including TPT) (9%)
- Lesion length: 27.4 ± 23.9 mm
- Stenting: 7%
- Complications:
 - abrupt closures 1%
 - dissections 9%
 - minor embolizations 10%
 - perforations 2%
- TLR: 26% at 12 months
- 1-year restenosis rate: 38.2%


DCB Global Registries

1406 patients (1773 lesions) Lesion length 12.1 ± 9.5 cm


691 patients Lesion length 10.1 ± 8.4 cm

VIVA 2016

Limitations of Balloon Angiopasty

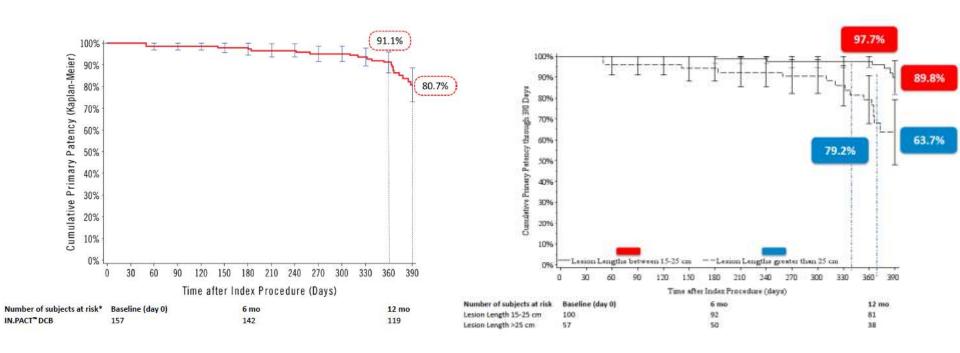
Challenges to DCB

- Long lesions:
 - more plaque burden, higher risk of dissection
- Calcification:
 - difficult to dilate, more residual stenosis, higher risk of dissection, insufficient drug delivery
- ISR lesions:
 - remaining neointimal burden (residual stenosis)

IN.PACT Global Long Lesion Imaging Cohort

Losiono (NI)	164
Lesions (N)	164
Lesion Type:	
de novo	83.2% (134/161)
restenotic (no ISR)	16.8% (27/161)
ISR	0.0% (0/161)
Lesion Length	26.40 \pm 8.61 cm
Total Occlusions	60.4% (99/164)
Calcification	71.8% (117/163)
Severe	19.6% (32/163)
RVD (mm)	4.594 ± 0.819
Diameter Stenosis (pre-treatment)	90.9% ± 14.2
Dissections: 0	37.9% (61/161)
A-C	47.2% (76/161)
D-F	14.9% (24/161)

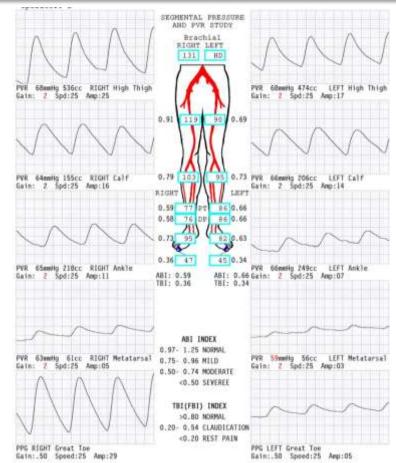
Procedural Characteristics						
Device Success [1]	99.5% (442/444)					
Procedure Success [2]	99.4% (155/156)					
Clinical Success [3]	99.4% (155/156)					
Pre-dilatation	89.8% (141/157)					
Post-dilatation	39.1% (61/156)					
Provisional Stent	40.4% (63/156)					
LL 15-25 cm:	33.3% (33/99)					
LL > 25 cm:	52.6% (30/57)					


- 1. <u>Device success:</u> successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP
- 2. <u>Procedure success</u>: residual stenosis of ≤ 50% (nonstented subjects) or ≤ 30% (stented subjects) by core lab (if core lab was not available then the site reported estimate was used)
- 3. <u>Clinical success:</u> procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge

IN.PACT Global Long Lesion Imaging Cohort

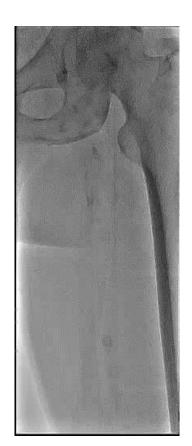
Overall primary patency

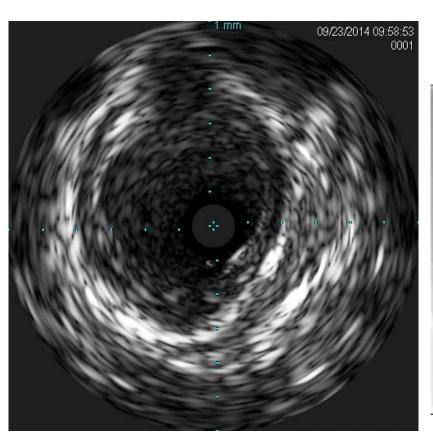
Primary patency: long vs. very long

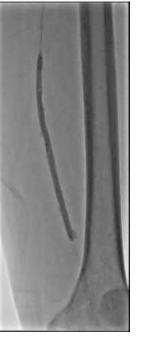

M/64, #5509713

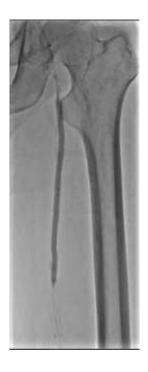
Claudication, both legs

ESRD on HD HTN DM

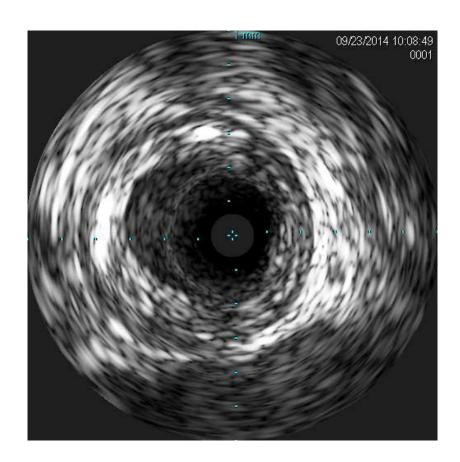




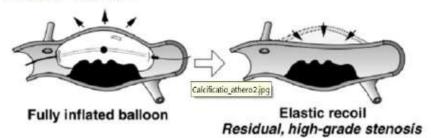

Intraluminal Balloon Angioplasty



Balloon Angioplasty



After Balloon Angioplasty



Calcium: Challenge for DCBs

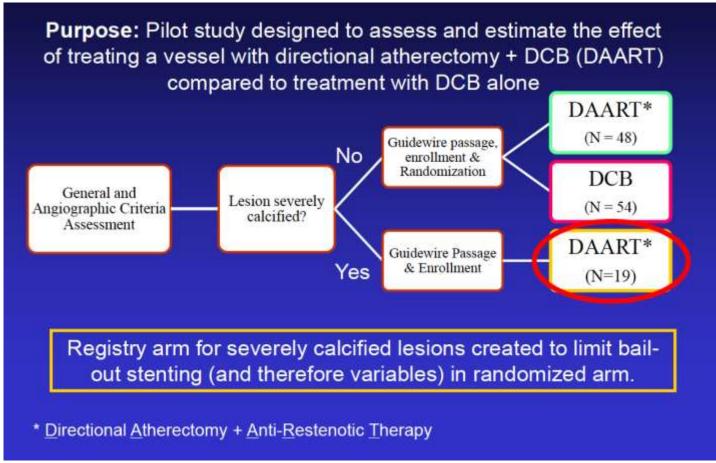
Calcium Limits Vessel Expansion

Significant difference in vessel compliance leads to overstretch in non-diseased tissue causing dissections, recoil, excessive injury, and poor outcomes

Figure 12.1. Elastic Recoil After PTCA of Calcified Lesions

Rather than cracking the hard, calcified atherona, PTCA causes stretching of the contralateral plaque-free wall segment and ineffective dilatation.

Freed MS, Safian RD: Manual of interventional Cordiology, Ch. 12, 245-254



Fanelli J Endovas Ther 2012;19:571-580

Fanelli et al. Cardiovasc Intervent Radiol (2014;37:898)

DEFINITIVE AR

Technical Success

Technical Success

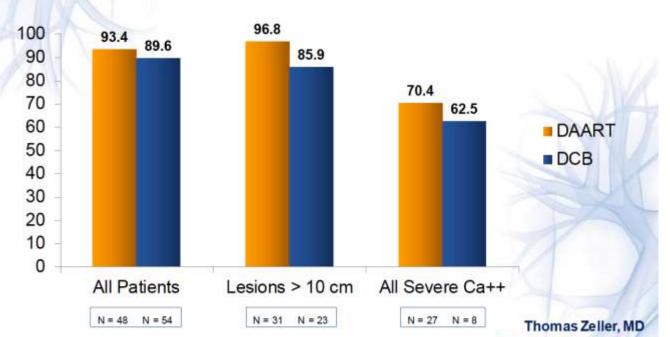
Defined as ≤30% residual stenosis following the protocol-defined treatment at the target lesion as determined by the Angiographic Core Laboratory.

	DAART	DCB	P Value
Technical Success	89.6%	64.2%	0.004

Adjunctive Therapy

(Post protocol-defined treatment)

	DAART (N= 48)	DCB (N = 54)	P Value				
Adjunctive Therapy							
PTA (post-)	6.3% (3/48)	33.3% (18/54)	0.0011				
Bail-out Stent	0	3.7% (2/54)	0.4968				

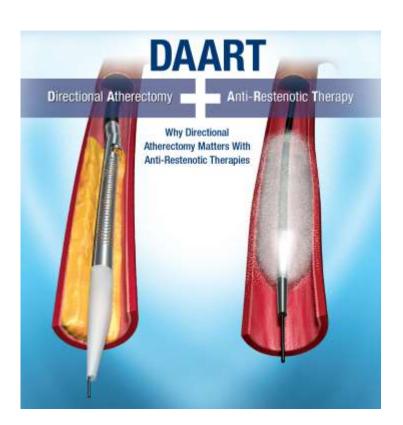


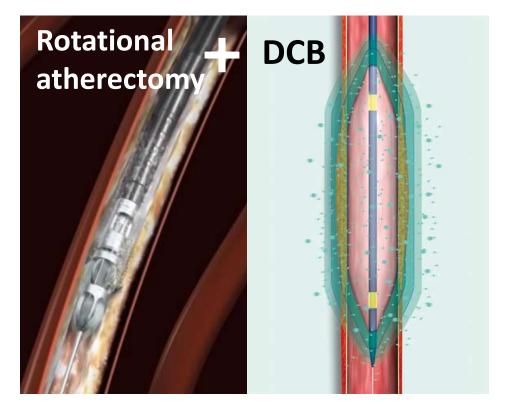
DEFINITIVE AR Study

DUS Patency - Potential Advantage Emerging in Long and Severely Calcified Lesions

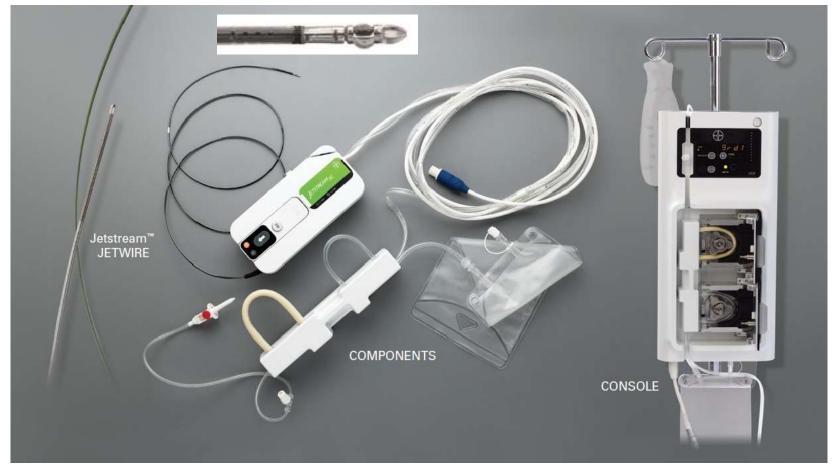
Lesion length: 10 ~11 cm

Bail-out stenting: DAART 0% vs. DCB 3.7%





Atherectomy & DCB


Comparison with Other Atherectomy Devices

FEATURE		Jetstream	Orbital	Directional	Laser	BENEFIT
Labelin Indicatio	Man I have been a second as a second	~	X	X	X	Complex lesions and total occlusion often contain mixed morphology lesions, requiring a device capable of managing it all.
Active As	piration	V				Aspiration of liberated debris may minimize the risk of distal embolization.
Front Cut	ting / Rotational Device	V	X		X	Total occlusions are common in PAD, front cutting enables engagement of tightest lesions.
Concentric Lumens		V	X			Concentric lumens facilitate straight line laminar flow.
Differential Cutting Expandable Blade Technology		V	X			Differential cutting targets only the plaque, minimizing the risk of vessel damage.
		V				Expandable blades deliver more versatility, facilitating treatment from SFA to TPT.
Lesion Type	Total Occlusions	V		X	X	
	Thrombus	~			X	Peripheral arterial disease rarely manifests as a single lesion type.
	Calcium	V	X	X		A mix of disease morphologies is common, driving the need for
	Soft Plaque	V		X	X	a single device capable of addressing them all.
	Fibrous Plaque	V		X	X	

Jetstream Components

Jetstream XC Systems: expandable Cutter

XC 2.1/3.0 mm

XC 2.4/3.4 mm

- Two sizing options in a single device (eXpandable Cutter)
- Rotational/differential cutting tip removes all plaque types
- Active Aspiration ports collect plaque & thrombus
- 135 cm and 120 cm OTW lengths
- .014GW / 7F sheath compatible

- Ergonomic design for enhanced user controls
- Intuitive user interface facilitates single operator use
- Improved wire GARD* simplifies wire management

XC 2.4/3.4 mm

* Compared to previous generation

Jetstream SC Systems:

Single Cutter

SC 1.6 mm

SC 1.85 mm

- Single Cutter technology for tortuosity
- Rotational/differential cutting tip removes all plaque types
- Aspiration ports collect plaque & thrombus
- 145 cm OTW
- .014GW / 7F sheath compatible

SC 1.6 mm

SC 1.85 m

- Ergonomic design for enhanced user experience
- Intuitive user interface facilitates single operator use
- Improved wire GARD* simplifies wire management

Jetstream: Selection Guide

R	JETSTREAMXC	①	Minimum Vessel Diameter Blades Down	3.5 mm
	O 24MM		Minimum Vessel Diameter Blades Up	4.5 mm
	JETSTREAM _{XC}	(1)	Minimum Vessel Diameter Blades Down	3.0 mm
2	O 21 MM 5 3.0 MM		Minimum Vessel Diameter Blades Up	4.0 mm
A	ETSTREAM _{SC}	⊕		
Y	Atherwickomy Catheslar O 1.85 MM		Minimum Vessel Diameter Blades Down	2.75 mm
	LETSTREAM ST	(1)	Minimum Vessel Diameter Blades Down	2.5 mm

Preparation for Jetstream

- Introducers: 7F or larger
- Wires:
 - 0.014 inch high support wires, exchange length
 - no hydrophilic coated wires
 - Jetwire
- Filter:
 - in cases of high plaque burden
 - No single unit wire & filter

Recommendations for Use

- When activating the Jetstream Catheter in a cutting mode advance only in a proximal to distal motion
- Complete two passes blades down followed by two passes blades up
- Advancement speed should be no faster than 1mm per second or using an engage – disengage technique listening to the motor RPMs
- REX back following each forward pass, providing active aspiration
- Always keep the tip of the Jetstream Catheter back 10cm from the guidewire spring tip

Tips for Minimizing Distal Embolization

- Treat the lesion with BD except distal cap or just proximal to the most severe distal segment.
- Repeat the initial treatment with BU.
- Treat the distal cap or most severe distal segment of the vessel with BD followed by BU.
- Distal cap or severe distal lesion acts like a filter.
- Protection against distal embolization is particularly important in CTO, mixed thrombotic-fibrotic plaques, calcified disease, long disease, and TASC D lesions

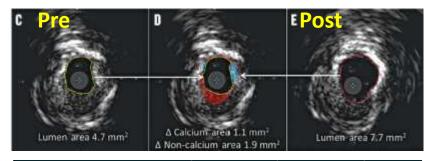
Jetstream-Ca++

Intravascular ultrasound evaluation of JETSTREAM atherectomy removal of superficial calcium in peripheral arteries

Akiko Maehara^{1,7}, MD; Gary S. Mintz², MD; Thomas M. Shimnhak³, MD; Joseph J. Ricotta 2nd⁶, MD; MS, Venkatesh Ramainh³, MD; Malcolm T. Foster 3rd⁶, MD; Thomas P. Davis⁷, MD; William A. Gray^{1,6}, MD

Columbia University Medical Center, New York, NY, USA;
 Configuration Research Foundation, New York, NY, USA;
 Wheeters Franciscan Healthcare, Militarylee, WY, USA;
 Enterry University, Alabam, GA, USA;
 Artzone Heart Institute, Phoneis, AZ, USA;
 Francis AT, USA;
 Francis AT, USA;
 Francis AT, USA;

KEYWORDS


- alberector
- calcium
- intravascular ultrasound (IVUS)
 peripheral arteries

Abstract

Aims: Endouvecular treatment of calcified femoral-poplised disease is challenging. We sought to evaluate the mechanism of huma gain when ming the JEFSTREAM Atherectomy System to treat calcified peripheral artery levinor.

Methods and results: The JETSTREAM Calcium Study was a prospective, single-sem, undicenter study to evolute the JETSTREAM Afterectomy System for severely calcified featural-populated actory lesions, i.e., patients with claudication and lesions with superficial calcium =90° and =5 mm in length as determined by interviscintal ultrasound (CVUS). The 2.1 mm ratheter was used in his study without datal protection. Felly-five patients underwent angiographic selection was moderate in eight cases and severe in 14, with an mailable data for four cases. Visual diameter steads was 86.69% peet-materiant, 374.13% post athreast-tury, and 104.6% post adjunctive treatment (after the visual diameter steads was 86.69% peet-materiant, 374.13% post athreast-tury, and 104.6% post adjunctive treatment (after the superficiel calcium are did not change (15.12.20° to 146.71°, p=0.83), the are of resurberation increased (234.20° to 63.40°, p=0.006), indicating device-related medification of calcium. Adjunctive balloon again-plasty was performed in 62% of the besieue, and stent amplantation in 31%. In 11 cases with adjunctive balloon distrition, the MLA increased flow T.1 (6.4, 7.8) mm² post athree-tury to 11.9 (10.3, 13.5) mm² post balloon (p=0.001) without flow-limiting dissection. No major adverse events occurred up to 30 days post procedure in either the study group or the patients who were excluded from the analysis.

Conclusions: The JETSTREAM Atherectomy System increased lumin dimensions in moderately or severely calcified femoral-poplited lesions by removing superficial calcium without major complications.

	Pre- treatment	Post- atherectomy	<i>p</i> -value			
Lumen area (mm²)	6.4 [5.5, 7.4]	9.6 [8.6, 10.6]	< 0.0001			
Minimum lumen diameter (mm)	2.2 [2.1, 2.4]	3.0 [2.8, 3.1]	< 0.0001			
Lumen symmetry index	0.68 [0.64, 0.72]	0.75 [0.71, 0.79]	< 0.0001			
Maximum superficial calcium (°)	146 [122, 169]	137 [110, 164]	0.12			
Decrease of calcium area (mm²)	NA	2.2 [1.8, 2.7]	NA			
Calcium reduction (%)	NA	77 [69, 86]	NA			
Surface shape of calcium						
Convex	66% (46)	26% (18)	0.0005			
Concave	34% (24)	74% (52)	0.0005			
Irregularity of superficial calcium						
Irregular	54% (38)	31% (22)	0.02			
Smooth	46% (32)	69% (48)				
Reverberation	34% (24)	43% (30)	0.14			
Maximum arc of reverberation (°)	25 [15, 35]	70 [46, 95]	0.001			
Values are least square means with 95% confidence interval or % (n).						

Jetstream-ISR

J Endovasc Ther. 2016 Apr;23(2):339-46. doi: 10.1177/1526602816634028. Epub 2016 Feb 26.

JetStream Rotational and Aspiration Atherectomy in Treating In-Stent Restenosis of the Femoropopliteal Arteries: Results of the JETSTREAM-ISR Feasibility Study.

Shammas NW1, Shammas GA2, Banerjee S3, Popma JJ4, Mohammad A3, Jerin M5.

Author information

Acute device (alone) success 76%

Filter use in 50%

Abstract Distal embolization 9%

PURPOSE: To evaluate the outcomes and stent-device interaction of the JetStream atherectomy device in the treatment of in-stent restenosis (ISR) of the femoropopliteal segment.

METHODS: The JetStream XC atherectomy device, a rotational cutter with aspiration capacity, was evaluated in a prospective cohort of 29 patients (mean age 69.9 ± 11.7 years; 11 men) with femoropopliteal ISR in 32 limbs (ClinicalTrials.gov identifier NCT01722877). Lesion length was 17.4 ± 13.1 cm. The primary effectiveness outcome was acute success (≤ 30% residual narrowing with no serious adverse events). The primary safety endpoint was major adverse events. Secondary endpoints included clinically driven target lesion revascularization (TLR) at 6 months and 1 year and loss of stent integrity as assessed by an angiographic core laboratory.

RESULTS: Treated length was 19.5 ± 12.9 cm. Acute success was obtained in 29/32 (91%) limbs. Acute device success (<50% residual narrowing after atherectomy alone) was 76% (22/29). Adjunctive balloon angioplasty was performed in all cases at a mean pressure of 11.6 ± 3.3 atm. Embolic filter protection was used in 16 (50%) of 32 limbs. Macrodebris was noted in 2 (12%) of 16 filters. Distal embolization requiring treatment occurred in 3/32 (9.4%) limbs (2 with no filter). Other non-procedure-related adverse events were 1 (3%) death (nonvascular) and 1 (3%) case of major bleeding. There were no new stent fractures or deformities (n=24) postatherectomy. Follow-up was completed on 27 patients (29 limbs) at 6 and 12 months. TLR at these time points occurred in 4/29 (14%) and 12/29 (41%) patients. Patency (duplex-derived peak systolic velocity ratio <2.4) was 72% at 6 months.

CONCLUSION: JetStream atherectomy using the XC device has favorable acute results in treating femoropopliteal ISR with high procedure success, no device-stent interaction, and favorably low TLR rates. A multicenter trial is needed to confirm these results.

M/61, (Rutherford 3) LHK, 3460319

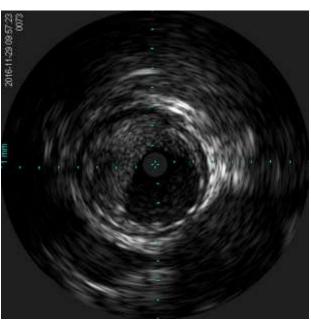
O 2.4 mm A 3.4 mm

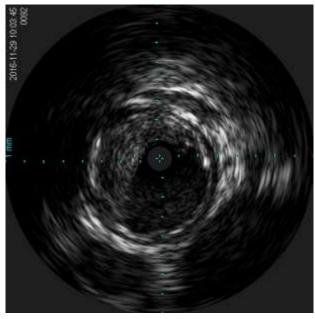
Severance Cardiovascular Hospital, Yonsei University Health System

M/61, LHK, 3460319

IN.PACT 5 x 150, 6 x 60 mm

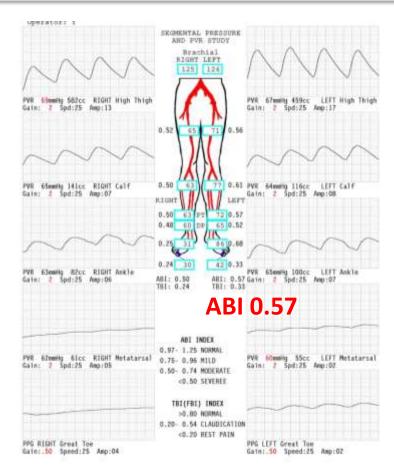
Severance Cardiovascular Hospital, Yonsei University Health System


IVUS


Before athrectomy

After athrectomy

After DEB



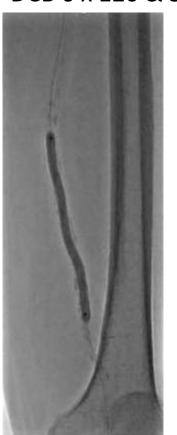
M/79, CTD #2549162

- CC: severe claudication in both legs (100 M) Rutherford 3
- PHx:
 - HTN
 - DM
 - CAD (3VD)
 - CKD (Cr 1.36, eGFR 51 ml/min)
 - S/P nephrectomy, due to RCC
 - S/P Prostate cancer

Guidewire Crossing

Severance Cardiovascular Hospital, Yonsei University Health System

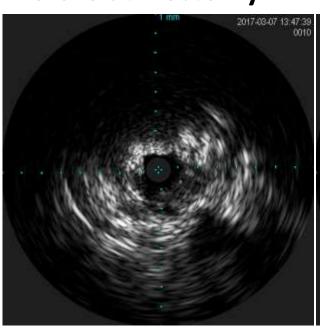

Atherectomy & DCB

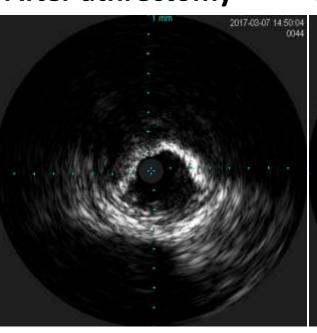


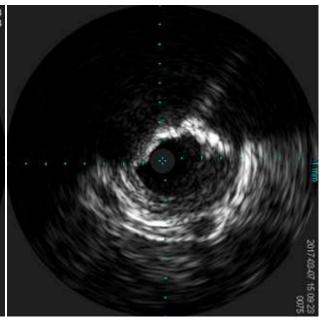

Jetstream XC 2.4/3.4

InPACT DCB 6 x 120 & 5 x 150

Severance Cardiovascular Hospital, Yonsei University Health System

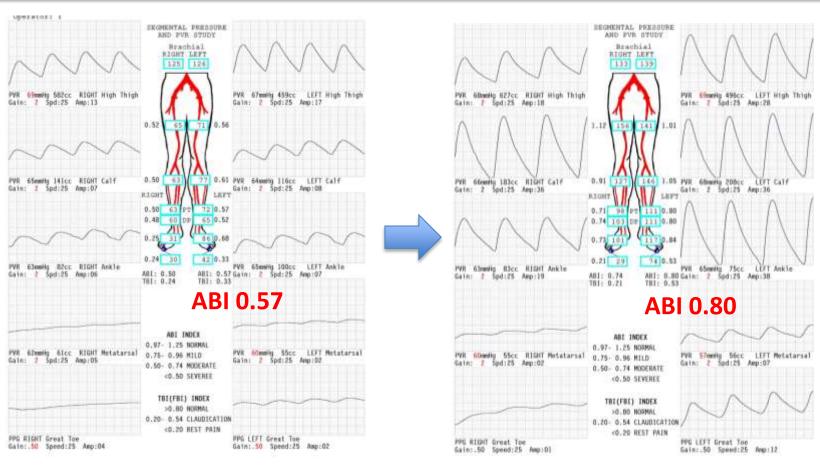

IVUS



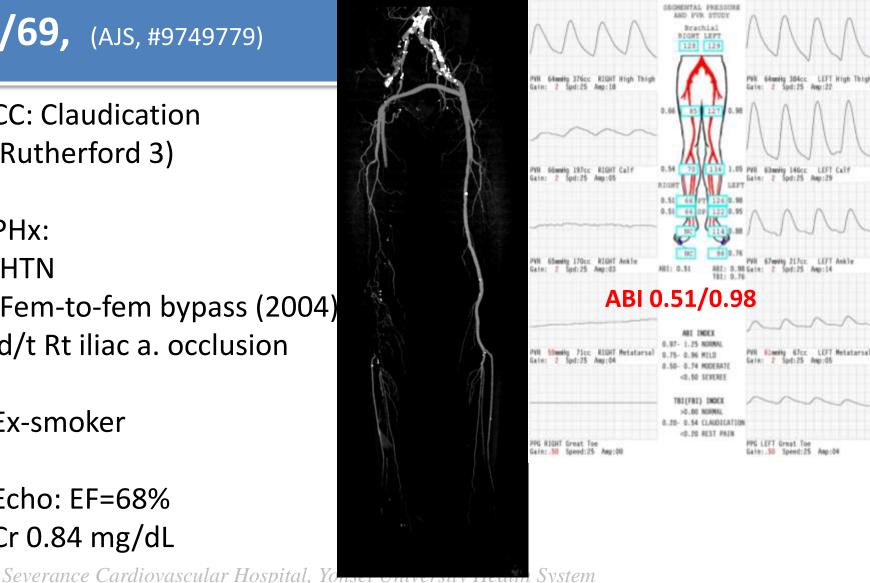

Before athrectomy

After athrectomy

After DCB



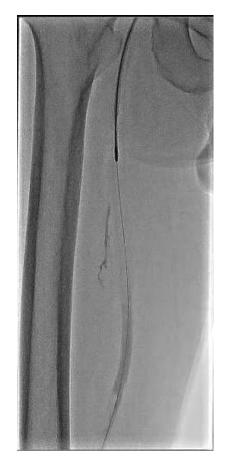
Post ABI



M/69, (AJS, #9749779)

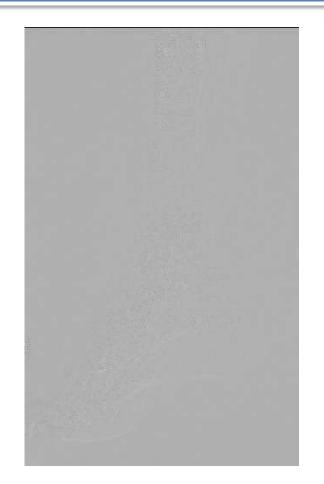
- CC: Claudication (Rutherford 3)
- PHx:
 - HTN
 - Fem-to-fem bypass (2004) d/t Rt iliac a. occlusion
- Ex-smoker
- Echo: EF=68%
- Cr 0.84 mg/dL

Bidirectional Approach



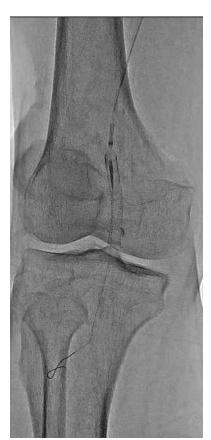
Severance Cardiovascular Hospital, Yonsei University Health System

Jetstream

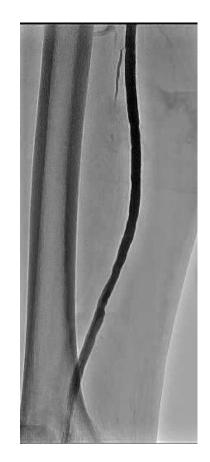


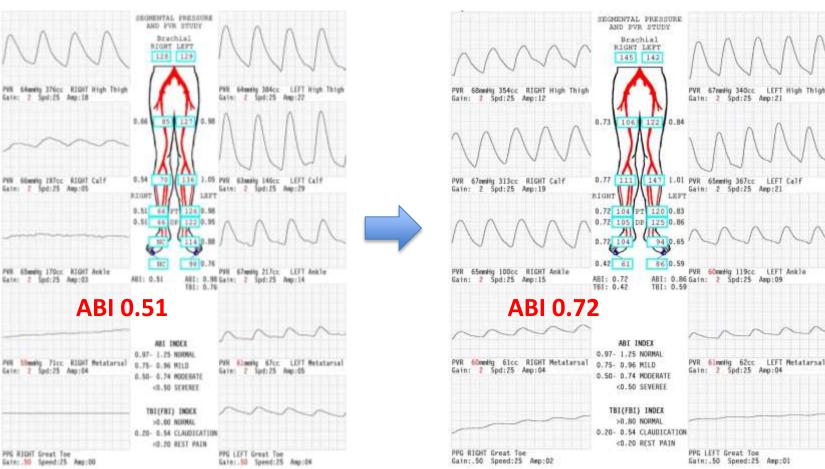
Severance Cardiovascular Hospital, Yonsei University Health System

Balloon Dilation in Tibial Arteries






Supera Stent



Severance Cardiovascular Hospital, Yonsei University Health System

Post ABI

Severance Cardiovascular Hospital, Yonsei University Health System

Take Home Messages

- In complex lesions such as long lesions, calcified lesions, and ISR lesions, DCB alone has limitations to achieve optimal results.
- Jetstream is a rotational atherectomy device with capability to remove calcium and thrombus. It's effective and relatively easy to use.
- Combining Jetstream with DCB may lower risk of dissections and improve immediate and late outcomes. This needs to be proved in future clinical trials.

ENCORE SEOUL 2017

Sep 20 - 22, 2017

SEPTEMBER 20(WED) ~ 22(FRI), 2017 GRAND INTERCONTINENTAL SEOUL PARNAS, SEOUL, KOREA

