Which Station Will be Better? Proximal Protection vs. Distal Protection

Jong-Young Lee, MD, PhD

Division of Cardiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea

Risk of CAS (carotid artery stenting)

- The greatest risk associated with CAS is peri-procedural stroke or asymptomatic brain infarction due to distal embolization.
- What is the etiology?
- Does use of embolic protection help?
- Does the type of embolic protection matter?
- Does the type of stent used matter ?

Timing of Minor Stroke after CAS

Circulation 2012;126:3054-3061

Should we use embolic protection device (EPD)?

J Endovasc Ther. 2009 Aug;16(4):412-27.

Cerebral protection devices reduce periprocedural strokes during carotid angioplasty and stenting: a systematic review of the current literature.

Garg N, Karagiorgos N, Pisimisis GT, Sohal DP, Longo GM, Johanning JM, Lynch TG, Pipinos II.

Creighton University Medical Center, Omaha, Nebraska, USA.

- Systematic review of published literature the stroke outcomes in protected and unprotected CAS.
- Twenty-four studies included
- Use of cerebral protection devices decreased the risk of perioperative stroke with CAS in both symptomatic and asymptomatic patients.
- RR for stroke was 0.62 (95% CI 0.54 to 0.72) with embolic protection.

Embolic Protection Devices

Distal filter Distal occlusion Proximal protection

Should All Patients Be Treated with same devices?

Year	Study	Design	EPD	Device	Stroke & Death
2010	EPIC	Single arm IDE	Distal EPD	Fibernet	2.5%
2010	CREST	RCT	Distal EPD	Multiple	4.4%
2012	PROTECT	Single arm IDE	Distal EPD	Emboshield	1.8%
2016	ACT	RCT (Asymp)	Distal EPD	Nav-6, Accunet	2.9%
2010	ARMOUR	Single arm IDE	Proximal occlusion	МоМа	2.7%
2011	EMPIRE	Single arm IDE	Proximal with Flow Reversal	Gore NPS	2.9%
2016	Roadster	Single arm IDE	Proximal with Flow Reversal	EnRoute (Michi)	2.8%

Should All Patients Be Treated with same device?

From Biamino, LINC 2016

Courtesy of Robert Bersin, MD

Are there EPD which perform better than others? Bottom Line

Not demonstrated

- There have been no large scale, randomized trials directly comparing superiority of one EPD over another
- Surrogate outcomes using proximal protection---new DW-MRI abnormalities---appear better, but lack context, especially for clinical outcomes
- Both proximal and distal protection have a role and physicians can be educated, when which may best serve the patient's procedure

Proximal vs. Distal Protection: RCT

Effect of two different neuroprotection systems on microembolization during CAS

Allelah .	MO.MA	FILTER
n =	21	21

Table 4. MES Counts During the Different Phases of CAS

3	Filter Group	MO.MA Group	p Value
Sheath placement-protection device placement	20 ± 15	18 ± 10	NS
Wiring of the stenosis	25 ± 22	2 ± 3	< 0.0001
Stent deployment	73 ± 49	11 ± 19	< 0.0001
Balloon dilation	70 ± 31	12 ± 21	< 0.0001
Retrieval of the protection device	14 ± 15	<mark>19 ±</mark> 15	NS
Total	196 ± 84	57 ± 41	< 0.0001

 Table 3. Number of Patients (%) with Detectable MES During he Different Phases of CAS

	Filter Group	MO.MA Group	p Value
heath placement-protection	21 (100%)	21 (100%)	NS
Viring of the stenosis	20 (95%) 21 (100%)	6 (29%)	< 0.0001
alloon dilation etrieval of the protection device	21 (100%) 21 (100%)	15 (71%) 21 (100%)	0.008 NS

hata are mean values ± SD or n (%).

CAS = carotid artery stenting; MES = microembolic signals; NS = not significant.

Schmidt A et al. JACC 20004; 44: 1966-1969

Proximal vs. Distal Protection: RCT

Randomized TCD MES Comparison for High-Risk, Lipid-Rich Plaque

Table 3 Patie	ents With Ig the Dif	Detectable M ferent Phases		
Steps		FilterWire EZ (n = 27)	MO.MA (n = 26)	p Value
Lesion wiring		26 (96%)	19 (73%)	0.145
Pre-dilation*		6/7 (86%)	4/10 (40%)	0.578
Stent crossing of the	e lesion	27 (100%)	7 (27%)	< 0.0001
Stent deployment		27 (100%)	7 (27%)	<0.0001
Stent post-dilation		26 (96%)	7 (27%)	< 0.0001
Device retrieval/def	lation	22 (81%)	25 (96%)	0.721

Montorsi P et al. JACC 2011;58:1656-63

Proximal vs. Distal Protection: RCT (PROFI study)

Randomized DWI MRI Comparison

Filter

Proximal Balloon Occlusion

Meta analysis of Proximal Protection (n=2,397)

	1	2		3	4	5ª	Full sample
Study device	MO.MA	MO.MA	MC).MA	MO.MA	Gore FRS	(N = 2,397)
			calebrat contract of the	Age			
Mean \pm SD (N)	71.62 ± 8.86 (233)	74.61 ± 8.80 (262) 68.31 ±	8.69 (157) 65	9.84 ± 7.65 (1,270)	70.21 ± 9.59 (475)	70.51 ± 8.52 (2,397
Median	71.00	76.64	70	0.00	70.00	70.00	70.92
Range (min,max)	(42.00,92.22)	(42.38,95.88	3) (45.00),85.00)	(40.00,91.00)	(30.00,90.00)	(30.00,95.88)
Age ≥ 80 18.88% (44/233)		29.01% (76/262) 14.65% ((23/157)	9.06% (115/1,270)	24.63% (117/475)	15.64% (375/2,397)
Male	fale 72.53% (169/233)		(62) 76.43%	(120/157) 7	1.87% (912/1,269)	66.95% (318/475)	70.70% (1694/2,396
Hypertension	77.68% (181/233)	87.02% (228/2	162) 78.98%	(124/157) 89	0.06% (1,131/1,270)	86.32% (410/475)	86.52% (2,074/2,397
Hyperlipidemia	53.22% (124/233)	84.06% (211/2	(51) 69.43%	(109/157) 7	75.83% (963/1,270)	76.84% (365/475)	74.27% (1,772/2,386
History of diabetes	37.77% (88/233)	37.69% (98/2)	60) 29.30%	(46/157) 3	38.77% (492/1,269)	34.95% (166/475)	37.18% (890/2,394)
Symptomatic (stroke, TIA, amaurosis fugax < 180 days)	36.91% (86/233)	16.03% (42/2	62) 71.34%	(112/157) 2	27.75% (351/1,265)	30.32% (144/475)	30.73% (735/2,392)
Current smoking	36,91% (86/233)	14.84% (38/2	56) N	R ^b	58.04% (498/858)	26.32% (125/475)	41.00% (747/1.822)
Contralateral occlusion of ICA	1.29% (3/233)	NR ^b	N	IR ^b	4.41% (56/1,270)	6.95% (33/475)	4.65% (92/1,978)
TABLE II. Even	ts by Study	2			. 9.	-3	
		1	2	3	4	5"	
Study device		MO.MA	MO.MA	MO.MA	MO.MA	Gore FRS	Meta-analytic combined rate (%)
Composite rate of 30 days postpro	MACCE to	0.86% (2/233)	2.29% (6/262)	5.73% (9/157)	1.50% (19/1270)	2.95% (14/475)	2.25
Myocardial infarc	tion	0.00% (0/233)	0.00% (0/262)	0.00% (0/157)	0.00% (0/1270)	0.63% (3/475)	0.02
Death		0.43% (1/233)	0.76% (2/262)	0.64% (1/157)	0.55% (7/1270)	0.63% (3/475)	0.40
Death		0 130/ (1/200)	1 010/ (5/262)	5 100/ (0/157)	1 020/ (12/1270)	2 320% (11/175)	1.71
Stroke		11 94 17/0 11// 11/	7 7 7 1 1//0/1	J.1070 (0/13/)	1.0270 (13/12/0)	2.3270 (11/4/3)	1./1
Stroke	7 7 F	ND(0.0000 (0/202)	1010 001	0.170 10110-00	1 4501 (51155)	0.00
Stroke Intolerance: devic	e use interruption ^b	NR ^c	0.38% (1/261)	1.91% (3/157)	0.16% (2/1270)	1.47% (7/475)	0.63

Robert Bersin et al. CCI 2012;80:1072–1078

Meta analysis of Proximal Protection (n=2,397)

30-day death/stroke/MI rate in RCT (arm CEA)

Meta analysis of Proximal Protection (n=2,397)

		St	udy-specific OR				
Baseline variables	1	2	3	4	5ª	Meta-analysis OR	P value
Age (per 1-year increase)	1.31	1.00	0.99	1.11	1.03	1.05	0.01
Gender (Male)	NA ^b	0.99	NA ^b	0.85	1.84	1.49	0.32
Hypertension	NA ^b	0.74	0.51	1.05	0.95	0.87	0.84
Hyperlipidemia	0.88	0.28	0.88	1.20	1.11	0.93	0.93
History of diabetes	NA ^b	8.59	3.23	2.75	1.41	2,34	0.01
Current smoking	NA ^b	NA ^b	NR ^c	1.16	1.12	0.90	0.95
Contralateral occlusion of ICA	NA ^b	NR ^c	NR ^c	1.21	2,31	1.72	0.55
Symptomatic	1.71	NA ^b	0.30	3.66	0.92	1.27	0.54

TABLE III. Meta-analytic Odds Ratios for Predictor Variables

The only independent risk predictors were age and diabetes.

Patient gender, **symptomatic status**, and other baseline characteristics were not found to be risk predictors for CAS using proximal occlusion devices.

The presence of a **contralateral occlusion does not predict** an increased risk of MACCE, nor does it predict device/procedure intolerance.

CCI 2012;80:1072–1078

National Cardiovascular Data Registry

TABLE 2 Major Adverse Events Based on Embolic Protection Type

			In-Hospita	l Outcomes	n=10,2	.46)
	Before P	ropensity Ma	tching	After Propensity Matching		
	F-EPD (n _ 9,656)	P-EPD (n _ 590)	p Value	F-EPD (n _ 2,032)	P-EPD (n _ 508)	p Value
Death or stroke	234 (2.4)	9 (1.5)	0.164	40 (2.0)	8 (1.6)	0.560
Mortality	40 (0.4)	1 (0.2)	0.730	9 (0.4)	1 (0.2)	0.697
Stroke	209 (2.2)	9 (1.5)	0.296	33 (1.6)	8 (1.6)	0.937
			30-Day 0	outcomes (N	=7,693	
	Before Propensity Matching After Propensity Matching					
	Before Pr	opensity Mate	ching	After Pro	pensity Mate	hing
	ветоге Pr F-EPD (n — 7,211)	P-EPD (n = 482)	p Value	After Pro F-EPD (n – 1,469)	P-EPD (n – 406)	hing p Value
Death or stroke	ветоге Pr F-EPD (n – 7,211) 300 (4.2)	opensity Mate P-EPD (n = 482) 12 (2.5)	p Value 0.072	After Pro F-EPD (n – 1,469) 59 (4.0)	P-EPD (n – 406) 11 (2.7)	hing p Value 0.219
Death or stroke Mortality	ветоге Рг F-EPD (n – 7,211) 300 (4.2) 53 (0.7)	P-EPD (n - 482) 12 (2.5) 2 (0.4)	p Value 0.072 0.582	After Pro F-EPD (n – 1,469) 59 (4.0) 12 (0.8)	P-EPD (n – 406) 11 (2.7) 2 (0.5)	hing p Value 0.219 0.747

derv 2015;8:609–15

Distal Filter Protection

Advantage

- Continuous carotid artery blood flow
 - Less intolerable (perfusion)
- Intuitive
- Permits visualization of carotid artery during device deployment
- Smaller introducer (6-7 Fr)

Distal Filters Have Limitations

- 1. No protection during lesion crossing
- 2. Requires ~ straight landing zone
- 3. Difficult delivery & use for tortuous ICAs
- 4. Malapposition allows "peri-flow" emboli
- 5. Allows passage of particles < 100 microns ("through flow")
- 6. "Full basket" affects flow rates
- 7. Spasm/dissection
- 8. Difficult retrieval

Filter size and apposition matters in distal EPD...

Stuff gets through

Capture rate proportional to pore size – Vessel and guidewire bias apposition --Allows material around filter (peri-flow)

Proximal Protection

Advantage

- Do not require wire crossing of the stenotic lesion without protection
- Landing zone tortuosity doesn't matter
- Less emboli get to brain... on TCD & DWI
- Great results especially elderly and symptomatic patients
- Possible to near total lesion

Proximal Protection

Disadvantage

• Transient blockage of cerebral flow

 \rightarrow Intolerance possible with poor collateral or contralateral occlusion (3~8%)

- Some loss of visualization due to occluded flow
- Larger device (8~9 Fr introducer)
- More manipulation of aortic arch
- May be ECA dependent
- New mechanism to learn
- High pressure during time-dependent procedure

I prefer proximal EPDs, Why?

Incidence of clinical and surrogate CAS events is higher than the low risk categories, therefore more opportunity for improvement

Mechanistically sound logic e.g.,

▶ Symptomatic \rightarrow thrombotic lesion \rightarrow proximal protection

And the low risk CAS patients? Don't they deserve the "best" EPD?

- Low risk defined as:
 - Young
 - Asymptomatic
 - Straightforward access
 - Focal lesions

Clinical outcomes may not be distinguishable between EPD devices.

For selection of which EPDs

Physician experience or availability

- Patient selection
 - complete medical history
 - thorough evaluation of anatomy

A matter of choice and individualization

- Anatomy
 - severe angulation
 - proximal or distal tortuosity
 - aortic arch type
 - stenosis or extension of plaque into external or common
 - ostial disease
 - contralateral stenosis or occlusion

A matter of choice and individualization

- Lesion Characteristics
 - degree of stenosis
 - unstable or high risk plaque characteristics
 - : ulceration or intraluminal thrombus
 - : long smooth lesions
 - : hypoechoic lesions
 - : significant calcification
 - : intraplaque hemorrhage
- Age (Octagenerian)
- Symptomatic state

Conclusions

Proximal EPDs may expand number of safely performed CAS.

- Symptomatic and octagenarians
- Poor ICA landing zones
- Carotid dissections
- Intracranial stenosis or high lesions
- Acute strokes

My default strategy for standard CAS

Conclusions

Distal EPDs may work in majority of daily cases.

- More familiar, More data
- Contrast usage
 - \rightarrow better for difficult GW passage
- Better for contralateral occlusion / poor collateral
- Better for significant CCA or ECA stenosis
- Less manipulation of aortic arch
- Alternative access from radial artery

Thank you for your attention