

New Designs in Carotid Stents: Micromesh Technology compared with Open or Closed Cell Design

William A. Gray MD System Chief of Cardiovascular Services, Main Line Health President, Lankenau Heart Institute Wynnewood, PA USA

Disclosures

 Consultant to Silk Road Medical, Contego, Abbott Vascular, WL Gore, Medtronic, BSC

What are the possible causes of stroke in CAS?

- Operator error
 - Technique (balloon sizing, wire misadventure, EPD error, etc.,)
- Patient factors
 - Vulnerable plaque (lesion, carotid, aorta)
 - Vascular anatomy or characteristics (calcium, thrombus, etc.,)
 - Genetics related to thienopyridine metabolism
- Inadequate technology
 - EPD, stent, procedural pharmacology

Open and closed cell design elements

Stent design: open vs. closed cell

Closed cell stent leading to kinking

Open cell stent conforming to vessel

Differences in cell size by stent

Also need to consider MCUSA

Pore (MCUSA) sizes

No significant difference between OC and CC stents

Xact, PROTÉGÉ RX and Acculink = 8-6mm tapered stents (distal portion)

Lankenau Heart Institute Main Line Health Precise and Wallstent = 8mm straight stent

Clinical event rates vary by free cell area?

	Total population			Symptomatic population			Asymptomatic population		
	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events
Free cell area $<2,5 \text{ mm}^2$ $2,5-5 \text{ mm}^2$ $5-7,5 \text{ mm}^2$ $>7,5 \text{ mm}^2$ Total	2107 135 327 610 3179	48 3 16 23 90	26 3 11 21 61	882 52 155 228 1317	20 1 10 17 48	11 1 8 16 36	1225 83 172 382 1862	28 2 6 6 42	15 2 3 5 25
Free cell area $<2,5 \text{ mm}^2$ $2,5-5 \text{ mm}^2$ $5-7,5 \text{ mm}^2$ $>7,5 \text{ mm}^2$ Total	3179	2.3% 2.2% 4.9% 3.8% 2.83%	1.2% 2.2% 3.4% 3.4% 1.9%	1317	2.3% 1.9% 6.5% 7.5% 3.6%	1.2% 1.9% 5.2% 7.0% 2.73%	1862	2.3% 2.4% 3.5% 1.6% 2.25%	1.2% 2.4% 1.7% 1.3% 1.3%

Bosiers M, de Donato G, Deloose K, Verbist J, Peeters P, Castriota F, Cremonesi A, Setacci C. Does free cell area influence the outcome in carotid artery stenting? Eur J Vasc Endovasc Surg. 2007 Feb;33(2):135-41;

European Registry: no effect of stent type on outcomes

Symptomatic Patients (n=674)

EXACT (CC) and CAPTURE 2 (OC) No differences in prospective, adjudicated study

Stroke timing paradox: Not all strokes appear on the day of the procedure

Fairman R, Gray W, Scicli A et al. Ann Surg 246 (4) Oct 2007

MRI DWI white matter changes post CAS are greater than CEA: numerically but not by volume

Fly-through of a conventional stent

Post-procedural PLAQUE PROLAPSE through conventional stent struts

Suzuki M et al. ESC 2014 Presentation www.escardio.org

81 y.o. Female, Symptomatic

1/3 stents = Precise 2/3 stents = Carotid Wallstent

Images: Dr M. Suzuki ESC 2014 www.escardio.org

Eur Heart J. 2014;35(Abstr Suppl):178

Plaque prolapse on OCT common

New mesh stent designs

Name	RoadSaver aka Casper	Gore [®] Carotid Stent	CGuard™ Embolic Prevention Stent		
Stent frame	closed-cell Nitinol	open-cell Nitinol	open-cell Nitinol		
Mesh position in relation to frame	inside	outside	outside		
Mesh material	Nitinol	PTFE	PET		
Mesh structure	braided	inter-woven	single-fiber knitted		
Pore size	375 μm	500 μm	150 - 180 μm		

Ideal Pore Siz

WL Gore SCAFFOLD stent

*CAUTION: Investigational Device. Limited by United States Law to Investigational Use only.

Lankenau Heart Institute Main Line Health

CE Approved | Not available for sale in the USA

Initial series of CGuard[™] IVUS studies indicates...

ullet Excellent stent expansion and apposition ${f V}$

ullet ZERO tissue protrusion though mesh-and-struts $oldsymbol{V}$

CARENET I

Evaluation of PET Mesh Covered Stent in Patients with Carotid Artery Disease

The CARENET-Trial

(CAR otid Embolic protection using microNET)

Joachim Schofer (PI) Piotr Musialek (Co-PI) On behalf of the CARENET Investigators

Joachim Schofer, MD,PhD, Hamburg University CardiovascularCenter, Hamburg Germany Piotr Musialek, MD, PhD, Jagiellonian University Medical College at John Paul II Hospital, Krakow, Poland, Ralf Kolvenbach, MD, PhD, Augusta Hospital, Dusseldorf, Germany, Horst Slevert, MD, PhD, Cardlovascular Center Frankfurt, Frankfurt, Germany

Consume Dervelorer
Manocal Covers
NewYork Presbyterian

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

ijuklic et al. JACC, 2012;59

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

TERUMO: A Novel CAS Design

- Closed cell structure with flexible Nitinol weave
- Dual layer micromesh design for sustained embolic prevention

CASPER/Roadsaver vs. Other Closed Cell CAS OCT

Lankenau Heart Institute Main Line Health

Furnished by Dr. M Amor, Polyclinique Louis Pasteur, Nancy, France

Regulatory status of CASPER

- FDA IDE is in preparation for US investigation
- Initiation planned 2016

Summary

- Mesh-covered carotid stents likely to add benefit in terms of reducing not only clinical events but also surrogate DWI lesions
- As the stent becomes the "protector" and not the "provocateur", CAS outcomes—already good—should improve further