The lesson from DECISION-CTO randomized trial

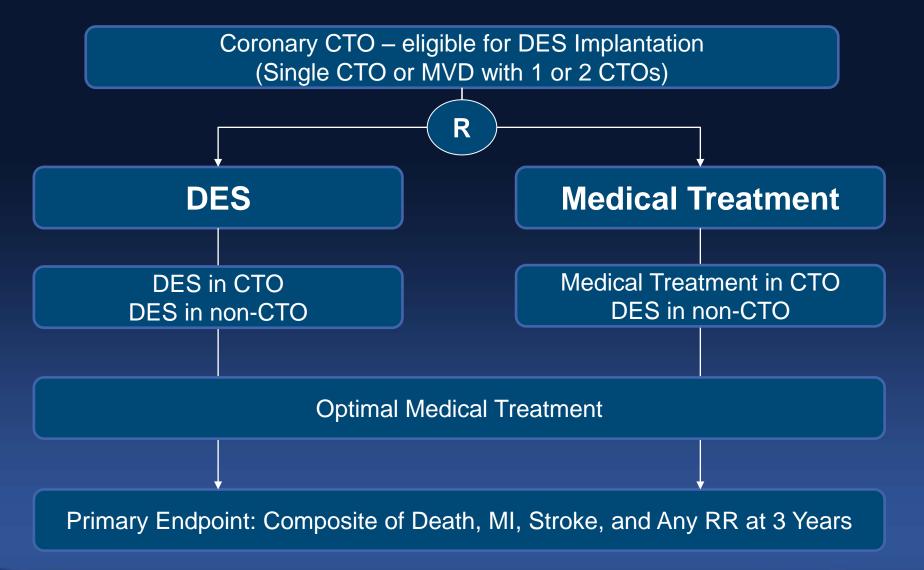
Optimal Medical Therapy With or Without Stenting For Coronary Chronic Total Occlusion

Seung-Whan Lee, MD., PhD.

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Background

- Benefits of successful CTO-PCI include reduced angina frequency and improvements in quality of life, left ventricular ejection fraction, or survival.
- However, CTO-PCI can lead to procedure-related complications. In addition, the evidence for CTO-PCI was obtained from observational studies, most of which compared successful and failed CTO-PCI without a control group receiving optimal medical treatment.


DECISION CTO Trial

Design

- DESIGN: a prospective, open-label, randomized trial
- OBJECTIVE: To compare the outcomes of OMT alone with PCI coupled with OMT in patients with CTO.
- PRINCIPAL INVESTIGATOR
 Seung-Jung Park, MD, PhD,
 Asan Medical Center, Seoul, Korea

DECISION CTO

Clinicaltrials.gov, Identifier: NCT01075051

Participating Centers (N=19)

Country	Site	Investigator
Korea	Asn Medical center	Seung-Jung Park
India	Ruby Hall Clinic	Shirish Hiremath
Korea	Keimyung University Dongsan Medical Center	Seung Ho Hur
Korea	Korea University Guro Hospital	Seung Un Rha
Indonesia	Medistra Hospital	Teguh Santoso
Korea	The Catholic University of Korea, Daejeon ST. Mary's Hospital	Sung-Ho Her
Korea	Chungnam National University Hospital, Daejeon	Si Wan Choi
Korea	Kangwon National University Hospital	Bong-Ki Lee
Korea	Soon Chun Hyang University Hospital Bucheon, Bucheon	Nae-Hee Lee
Korea	Kangbuk Samsung Medical Center, Seoul	Jong-Young Lee
Korea	Gangneung Asan Hospital, Gangneung	Sang-Sig Cheong,
Thailand	King Chulalongkorn Memorial Hospital	Wasan Udayachalerm
Korea	Dong-A University Hospital, Busan	Moo Hyun Kim
Korea	Chonnam National University Hospital, Gwangju	Young-Keun Ahn
Korea	Bundang Cha Medical Center, Bundang	Sang Wook Lim
Korea	Ulsan University Hospital, Ulsan	Sang-Gon Lee
Korea	Hangang Sacred Heart Hospital, Seoul	Min-Kyu Kim
Korea	Sam Anyang Hospital, Anyang	II-Woo Suh
Taiwan	Shin Kong Hospital	Jun Jack Cheng

Cardio Vascular Research Foundation

COLLEGE MEDICINE

Major Inclusion Criteria

- Silent ischemia, stable angina, or ACS
- De novo CTO located in a proximal to mid epicardial coronary artery with a reference diameter of ≥2.5 mm
- CTO was defined as a coronary artery obstruction with TIMI flow grade 0 of at least three months' duration based on patient history.

Major Exclusion Criteria

- CTO located in
 - Distal coronary artery
 - 3 different vessel CTOs in any location
 - 2 proximal CTOs in separate coronary artery
 - left main segment
 - In-stent restenosis
 - Graft vessel
- LVEF < 30%
- Severe comorbidity

Study Procedures (1)

- Patients who were assigned to PCIs underwent CTO-PCI using DES within 30 days after randomization using standard procedures.
- In cases of failed CTO-PCI, additional attempts were allowed within 30 days after the index procedure.
- The use of specialized devices or techniques, and the choice of drug-eluting stent type were left to the operator's discretion.

Study Procedures (2)

- Revascularization for all significant non-CTO lesions within a vessel diameter of ≥2.5 mm for patients with multi-vessel coronary artery disease was recommended.
- Patients were prescribed guideline derived optimal medical treatment including aspirin, P2Y12 receptor inhibitors (>12months in case of PCI), beta-blocker, CCB, nitrate, ACEi/ARB, and statin.
- Blood pressure and diabetic control, smoking cessation, weight control, and regular exercise were recommended.

Primary End Point

At 3 year, a composite of

- Death from any cause
- Myocardial infarction

Periprocedural MI: CK-MB > 5 times UNL

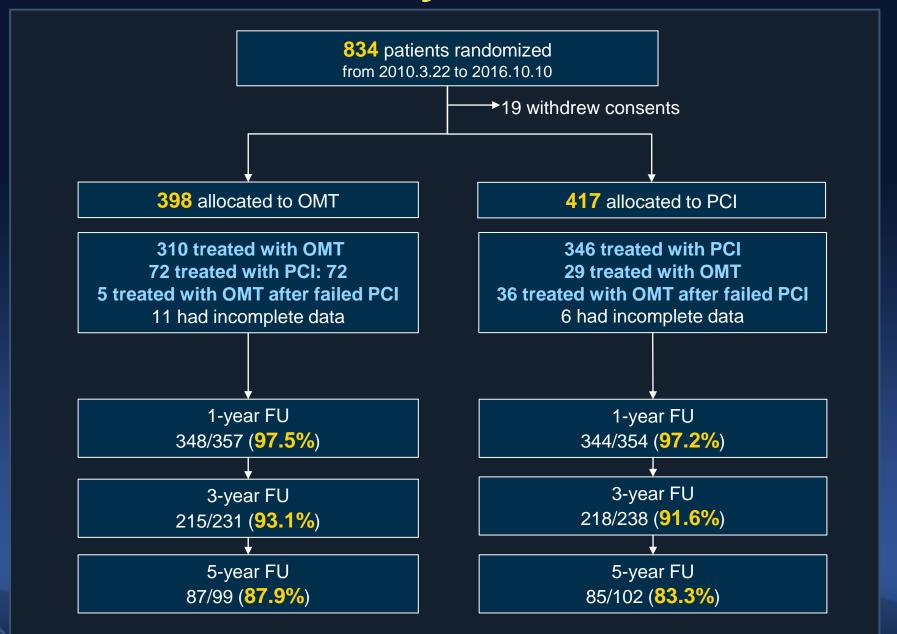
Spontaneous MI: any cardiac enzyme elevation

- Stroke
- Any repeat revascularization

Original Power Calculation

Non-inferiority Design for Primary Endpoint

- Assumed primary event rate: 17% at 3 years
- A noninferiority margin : event rate ratio 0.7
- A one-sided type I error rate: 0.025
- Power: 80%
- Dropout rate: 5%
- Assumed sample size: 1,284 patients


Premature Termination of Trial

 Because enrollment was slower than anticipated, enrollment was stopped in September 2016 as recommended by the data and safety monitoring board by which time 834 patients had been enrolled.

 The sponsor and study leadership were unaware of study results at the time of this decision.

Study Flow

Reasons for Crossover

OMT to PCI (N=77)	Number of Patients
OMT to PCI (N=77)	Number of Patients
Doctors' preference (PI feels PCI is beneficial for patient)	
For symptom control	25
Decreased LV systolic function	5
Positive noninvasive stress test	10
Multiple risk factors	12
For improvement of vital status	1
Patients' preference (patient strongly wants PCI)	24
PCI to OMT (N=65)	
Failed PCI	36
Doctors' preference (PI feels OMT is beneficial for patient)	
Controlled or improved symptom	12
Negative noninvasive stress test	3
High probability of failure	2
High risk of procedure	2
Patients' preference	10

Statistical Analysis

- All analyses were performed according to the intention-to-treat principle. Further sensitivity analyses were performed in the perprotocol and as-treated population.
- Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models, with robust standard errors that accounted for clustering effect of stratified randomization.
- Noninferiority test using the Z-test with 95% CI of difference in the 3year event rate.
- Survival curves were estimated using Cox model and the Kaplan-Meier method
- For quality of life analysis, we assumed the missing values were missing at random, and compared mean values of two groups using Student's t-test at specific time points.
- All P-values and CIs were two-sided. SAS software version 9.3 was used for all statistical analyses.

Baseline Characteristics

ITT Population

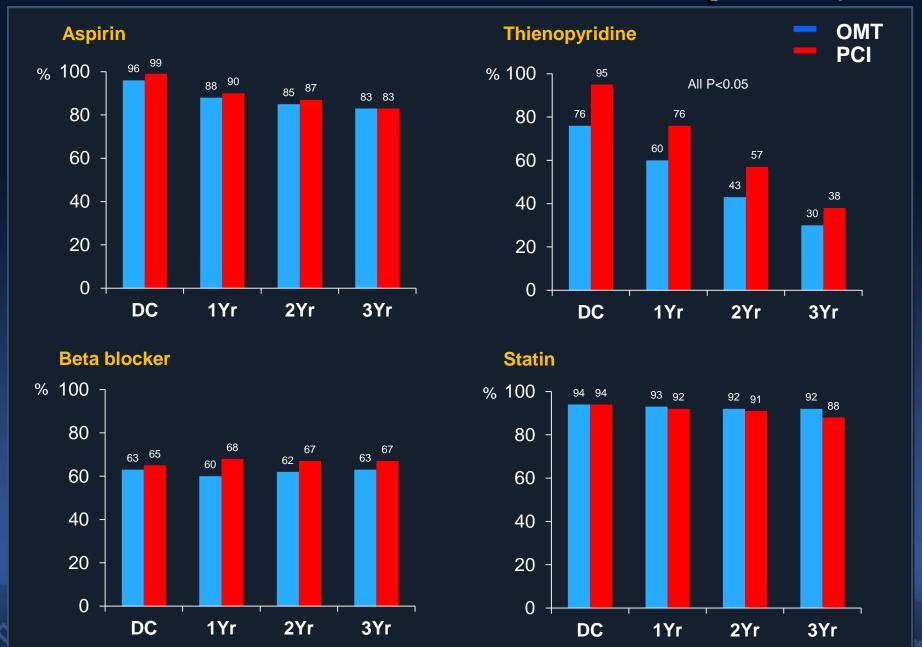
	OMT (N=398)	PCI (N=417)	P value
Age (years)	62.9±9.9	62.2±10.2	0.35
Male sex	315 (81.4%)	342 (83.2%)	0.50
BMI, kg/m²	25.4±3.3	25.6±3.6	0.66
Hypertension	235 (60.7%)	261 (63.5%)	0.50
Diabetes mellitus	133 (34.4%)	132 (32.1%)	
Hypercholesterolemia	215 (55.6%)	248 (60.3%)	0.17
Current smoker	102 (26.4%)	125 (30.4%)	0.20
Previous PCI	74 (19.1%)	62 (15.1%)	0.13
Previous MI	34 (8.8%)	45 (10.9%)	0.31
Previous CABG	5 (1.3%)	4 (1.0%)	0.75
Chronic renal failure	5 (1.3%)	6 (1.5%)	0.84
LVEF, %	57.2±9.4%	57.2±9.8%	0.95

Baseline Characteristics

ITT Population

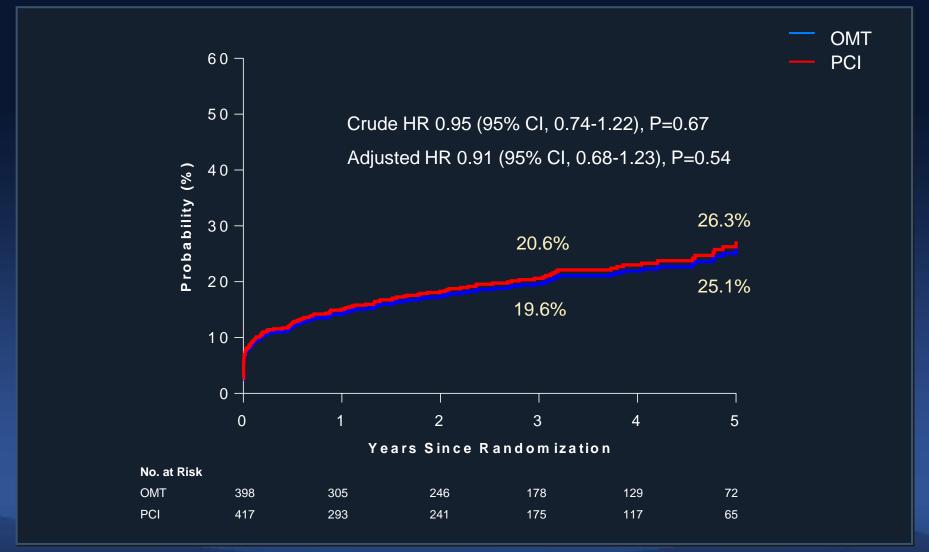
	OMT (N=398)	PCI (N=417)	P value		
Clinical presentation			0.58		
Stable angina	290 (74.9%)	297 (72.3%)			
Unstable angina	75 (19.4%)	84 (20.4%)			
AMI	22 (5.7%)	30 (7.3%)			
Location of CTO			0.71		
LAD	161 (41.6%)	183 (44.5%)			
LCX	42 (10.9%)	40 (10.2%)			
RCA	184 (47.5%)	186 (45.3%)			
Multivessel disease	286 (73.9%)	301 (73.3%)	0.76		
SYNTAX score	21.0±9.5	21.2±9.1	0.79		
J-CTO score	2.3±1.2	2.2±1.2	0.23		
PCI at any lesion	215 (54.0%)	374 (89.7%)	<0.001		
Among PCI patients (CTO or non-CTO)					
Number of total stents	2.0±1.4	2.4±1.3	<0.001		
Total stent length, mm	53.6±39.4	71.2±40.5	<0.001		

COLLEGE WEDICINE

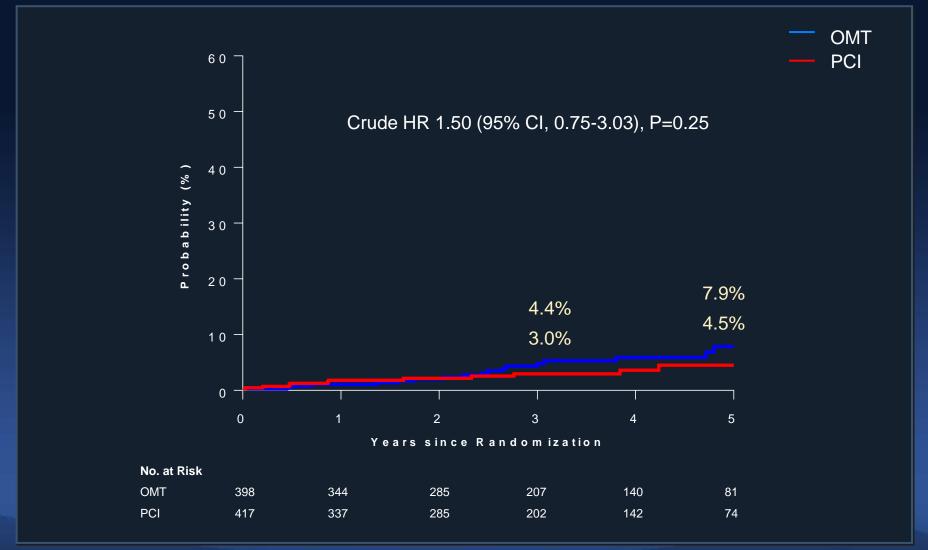

Medical Cente

CTO PCI Characteristics

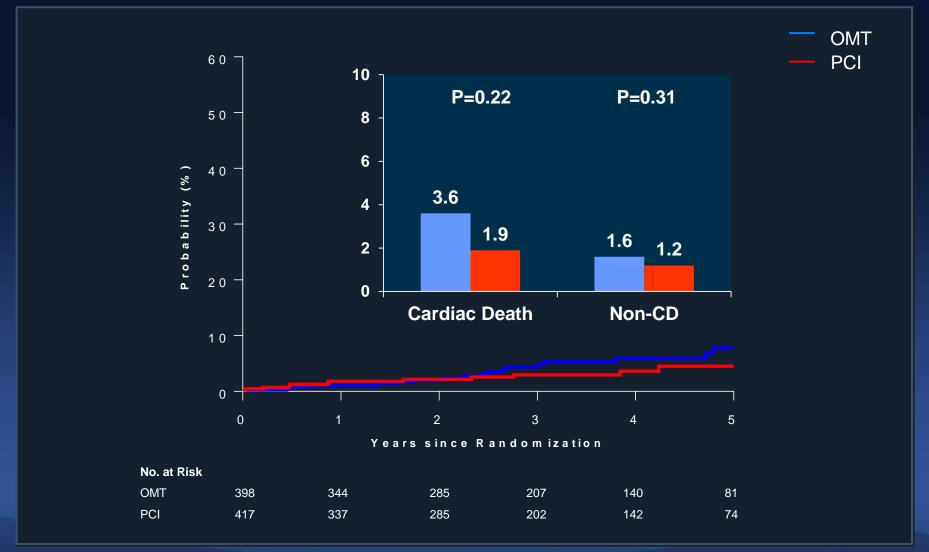
Attempted PCI	N=459
CTO PCI success	418 (91.1%)
Retrograde approach	113 (24.6%)
Lesion passaged wire	
Low penetration force wire	117/418 (28.0%)
Intermediate to high penetration force wire	301/418 (72.0%)
CTO technique	
Single wire technique only	309/418 (73.9%)
Parallel wire technique	72/418 (17.2%)
IVUS-guided wiring	25/418 (6.0%)
CART technique	55/418 (13.2%)
Additional back-up support	
Corsair	91/418 (21.8%)
Microcatheter other than Corsair	230/418 (55.0%)
Over-the-wire balloon	6/418 (1.4%)

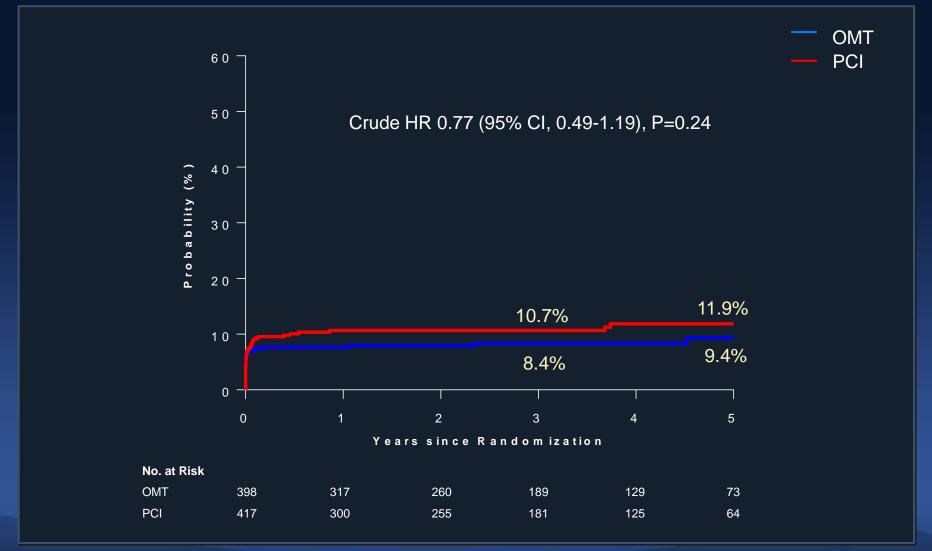


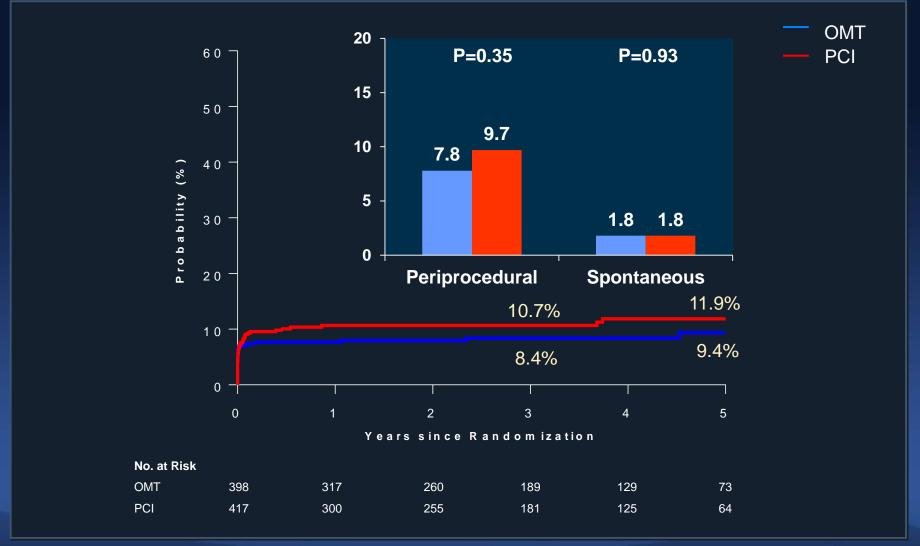
ITT Population

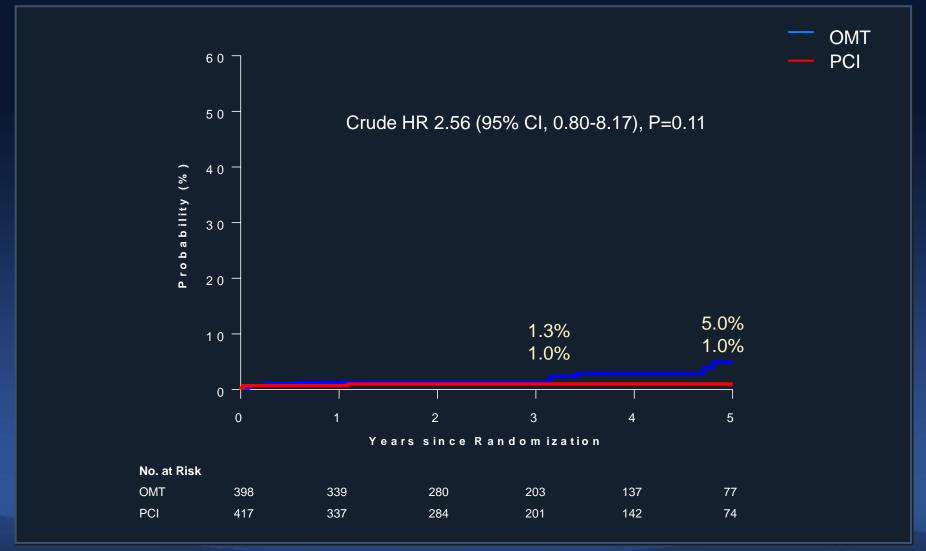


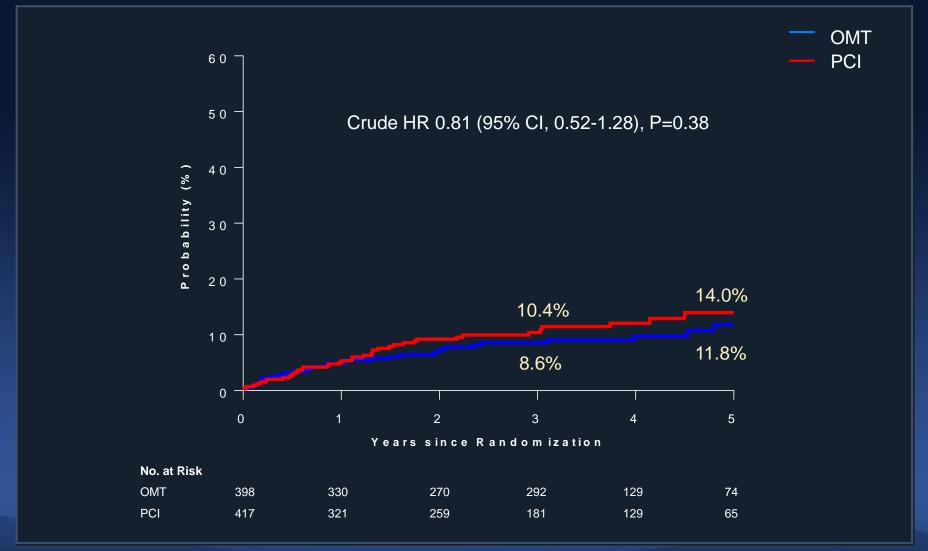
Primary End Point

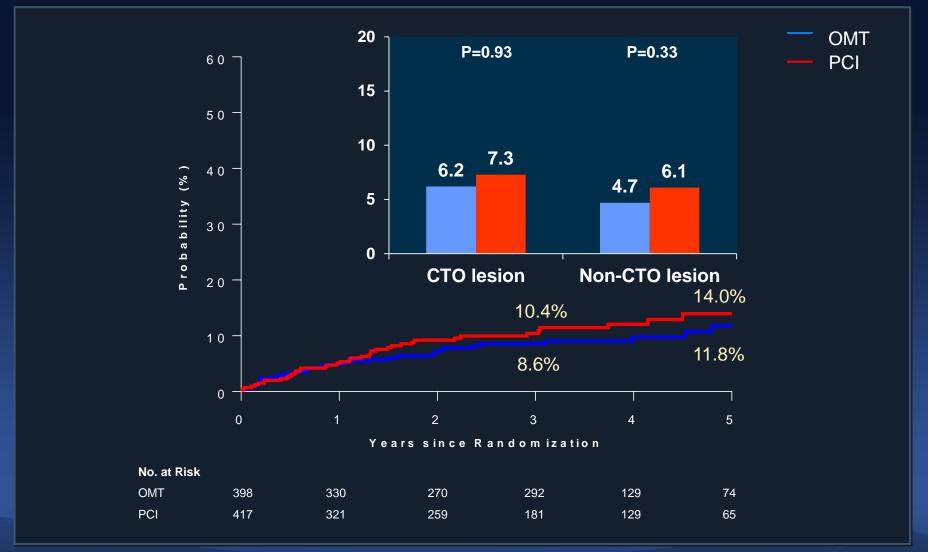

(Death, MI, Stroke, Any Repeat Revascularization)


Death from any cause

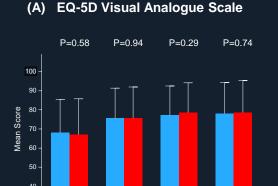

Death from any cause

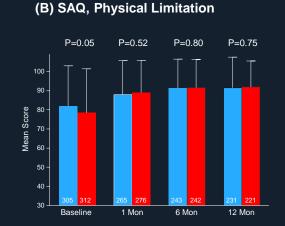

Myocardial Infarction

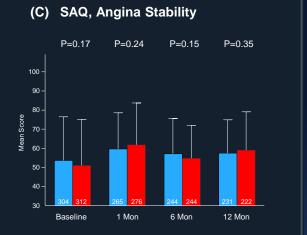

Myocardial Infarction


Stroke

Repeat Revascularization

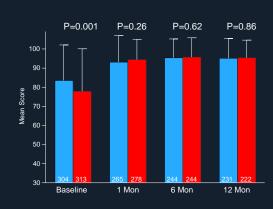


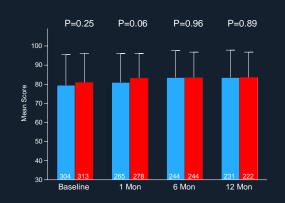

Repeat Revascularization



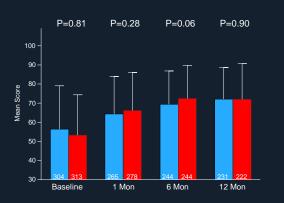
Quality of Life Measures Over Time

ITT Population





1 Mon


Baseline

(F) SAQ, Quality of Life

Subgroup Analysis

Subgroup	ОМТ	PCI		Hazard ratio (95% CI)	p value for Interaction
Overall		th event/total no. (%)	⊢	0.95 (0.70-1.28)	interaction
Age	81/387 (20.9)	86/411 (20.9)	ĬŢ	0.93 (0.70-1.26)	0.51
· ·	42/472 (25.0)	40/474 (07.6)	L	0.95 (0.56, 1.20)	0.51
≥ 65 y	43/172 (25.0)	48/174 (27.6)	i <mark>-</mark> i	0.85 (0.56-1.29)	
< 65 y	38/215 (17.7)	38/237 (16.0)	· <mark>T</mark> ·	1.05 (0.67-1.64)	0.05
Sex	00/045 (00.0)	74 (0.40, (00, 0)	H-H	0.04 (0.05, 4.00)	0.65
Male 	63/315 (20.0)	71/342 (20.8)	,	0.91 (0.65-1.28)	
Female	18/72 (25.0)	15/69 (21.7)		1.07 (0.54-2.13)	
Diabetes					0.45
Yes	29/133 (21.8)	32/132 (24.2)		0.80 (0.48-1.32)	
No	52/254 (20.5)	54/279 (19.4)	F <mark>-</mark> -1	1.03 (0.70-1.50)	
Previous myocardial infar					0.77
Yes	6/34 (17.6)	9/45 (20.0)	├	0.83 (0.30-2.34)	
No	75/353 (21.2)	77/366 (21.0)	H	0.96 (0.70-1.32)	
Acute coronary syndrome	Э				0.18
Yes	29/97 (29.9)	26/113 (23.0)	+	1.64 (0.88-3.05)	
No	52/290 (17.9)	60/298 (20.1)	H	0.82 (0.57-1.19)	
Typical chest pain					0.56
Yes	65/278 (23.4)	64/311 (20.6)	⊢	0.91 (0.64-1.29)	
No	16/109 (14.7)	22/100 (22.0)	+	1.63 (0.85-3.11)	
Ejection fraction					0.44
≥ 50%	60/321 (18.7)	63/332 (19.0)	HH	0.91 (0.64-1.30)	
< 50%	21/66 (31.8)	23/79 (29.1)	⊢-	1.21 (0.67-2.19)	
Multi-vessel disease					0.39
Yes	69/286 (24.1)	69/301 (22.9)	⊢	1.01 (0.72-1.41)	
No	12/101 (11.9)	17/110 (15.5)		0.70 (0.33-1.47)	
CTO located in the left ar					0.98
Yes	29/161 (18.0)	34/183 (18.6)		0.93 (0.57-1.53)	
No	52/226 (23.0)	52/228 (22.8)		0.94 (0.64-1.38)	
			0.1 OMT Better PCI Bette	10 er	

Per Protocol Analysis

OMT vs. PCI attempt

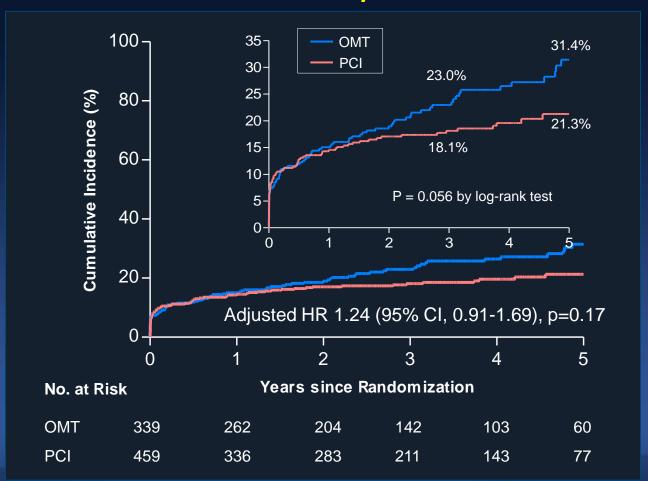
Primary Outcome

(Death, MI, Stroke, Any Repeat Revascularization)

Per Protocol Population

As Treated Analysis

OMT vs. PCI attempt



Primary Outcome

(Death, MI, Stroke, Any Repeat Revascularization)

As Treated Population

Predictors of future events

Predictors of Future Adverse Events Death, MI, Stroke, or RR

Overall Population

Variables	Univariate	p-value	Multivariate	p-value
Age (per 1-increment)	1.04 (1.02–1.06)	0.004	1.03 (1.01–1.05)	0.001
Body mass index, kg/m²	0.94 (0.89–0.98)	0.01		
Chronic kidney disease	2.49 (1.02–6.06)	0.045		
History of CHF	2.35 (1.30–4.23)	0.005		
Prior stroke	2.05 (1.31–3.22)	0.002	1.65 (1.03–2.63)	0.035
Atrial fibrillation	2.86 (1.39–5.88)	0.004	2.40 (1.16–4.99)	0.02
Left ventricular ejection fraction, % (per 1-increment)	0.98 (0.96–1.00)	0.012		
Clinical presentation (stable AP as a reference)	1.55 (1.23–1.86)	<0.001	1.29 (1.02–1.64)	0.04
Disease extent (1VD as a reference)	1.51 (1.23–1.86)	<0.001	1.39 (1.12–1.72)	0.003
CTO located at LAD	0.70 (0.51–0.96)	0.028		

Values are hazard ratios (95% confidence interval)

CTO = chronic total occlusion; CHF= chronic heart failure; LAD = left anterior descending artery; VD = vessel disease CKD refers to serum creatinine Ccr <60 mL/min.

Predictors of Future Adverse Events

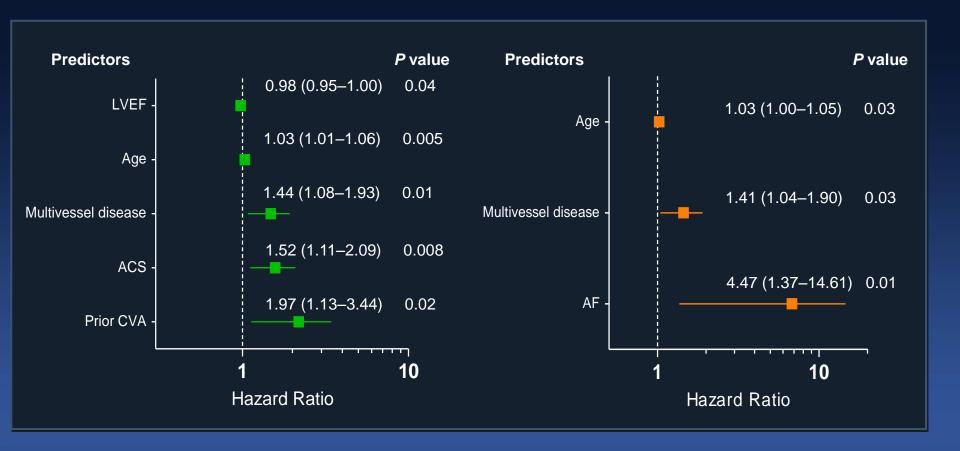
Death, MI, Stroke, or RR

Intention to treat population

OMT Population

PCI Population

CKD refers to serum creatinine Ccr <60 mL/min



Predictors of Future Adverse Events

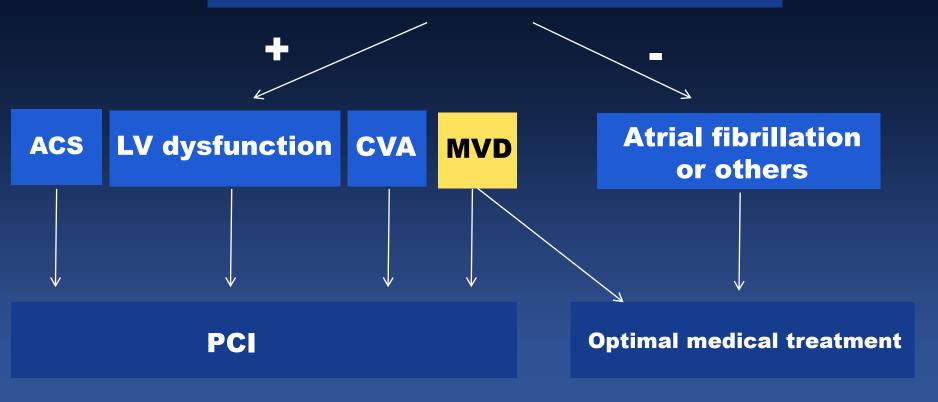
Death, MI, Stroke, or RR
As treated population

OMT Population (N=380)

PCI Population (N=418)

Predictors of Primary Outcome

Death, MI, Stroke, or RR As treated population


Mariablas	ОМТ		PCI		
Variables	Adjusted HR (95% CI)	p Value	Adjusted HR (95% CI)	p Value	
Common predictors					
Age (per-year increment)	1.03 (1.01–1.06)	0.005	1.03 (1.00–1.05)	0.03	
Multivessel disease	1.44 (1.08–1.93)	0.01	1.41 (1.04–1.90)	0.03	
Disparate predictors					
Prior stroke	1.97 (1.13–3.44)	0.02			
Clinical presentation of ACS	1.52 (1.11–2.09)	0.008			
LV EF (per 1% increment)	0.98 (0.95–1.00)	0.04			
Atrial fibrillation			4.47 (1.37–14.61)	0.01	

DECISION FOR CTO patients

CTO: suitable for PCI

Multivessel disease, ACS, poor LV function, prior CVA

Conclusion

- The DECISION-CTO trial is the first randomized clinical trial to compare the strategy of OMT alone with that of PCI in patients with coronary CTO.
- Our results showed that OMT as an initial strategy was statistically not different compared to PCI in terms of the composite of death, MI, stroke, or any revascularization at 3 years.
- The measures of health-related quality of life in the OMT and the PCI groups were comparable throughout the follow-up period

Conclusion

 However, despite statistical no difference, we did not provide firm conclusion for role of OMT in the CTO patients due to early termination and lower enrolment than anticipated.

 There is a signal for role of OMT, but further randomized clinical trials are necessary.

Conclusion Predictors of Future Adverse Events

- In CTO patients, conventional clinical risk factors (age, A Fib, CKD, disease extent, prior stroke, and ACS) are closely related to worse clinical outcomes as like other CAD population study.
- PCI for CTO patients may be preferred in patients with acute coronary syndrome, decreased LV function, and prior CVA patients.
- In contrast, medical treatment for CTO is preferred in patients with atrial fibrillation and other clinical factors.
- Multi-vessel disease with CTO is predictor for future events in both treatment arm. Therefore, CABG may be better strategy based on anatomic complexity.

Thank you for your attention

