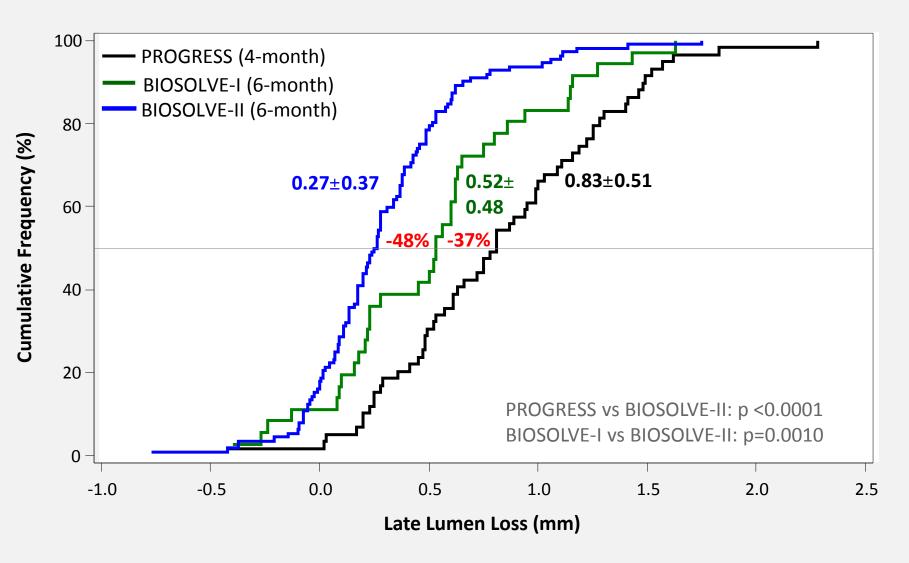
Magmaris

Jacques Koolen Cardiology, Catherina Ziekenhuis, Eindhoven, the Netherlands

Jacques Koolen

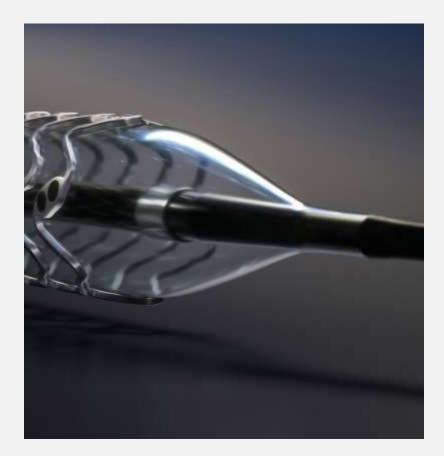
Disclosure


Speaker : Medtronic,Biotronik

Evolution of the BIOTRONIK Magnesium Scaffold

		PROGRESS-AMS	BIOSOLVE-I	BIOSOLVE-II
	Device Generation	AMS 4-Month	DREAMS 1G 6-Month	Magmaris 6-Month
Design	Diameter / length (mm)	3.0 & 3.5 / 15, 20	3.25 & 3.5 / 15	2.5, 3.0 & 3.5 / 15, 20, 25
	Backbone	Mg alloy	Refined Mg alloy	Refined Mg alloy
	Strut thickness / width (μm)	165 / 80	120 / 130	120 / 120 (Ø 2.5) 150 / 150 (Ø 3.0 & 3.5)
	Markers	none	none	Tantalum composite
	Coating - drug	none	PLGA / PTX	PLLA / SIR
Kinetics	Crossing profile (mm)	1.6	1.5	1.75
	Drug elution kinetics	n.a.	like Taxus	like Orsiro
	Absorption period in months	1-2	3-4 (Mg)	≈ 12 (Mg)
Results	In-segment late lumen loss (mm)	0.83 ± 0.51	0.52 ± 0.48	0.27±0.37
	TLF* (%)	23.8	4.3	3.3
	Definite-or-probable scaffold thrombosis (%)	0.0	0.0	0.0

*Composite of cardiac death, target vessel myocardial infarction, clinically driven target lesion revascularization and CABG

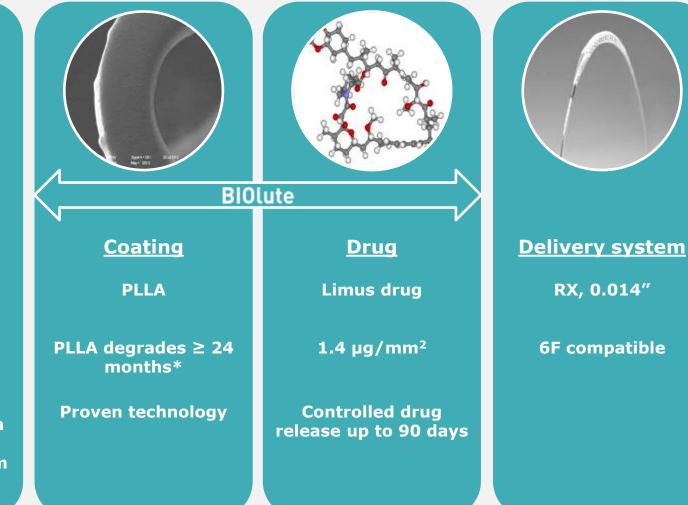

Comparison of in-segment LLL in PROGRESS, BIOSOLVE-I and BIOSOLVE-II

R Erbel et al., Lancet 2007; 369:1869-75, M Haude et al., Lancet 2013; 381:836-44.

Magmaris – key features

- First clinically proven resorbable Magnesium scaffold
- Compelling safety data¹
- Better deliverability than leading polymeric scaffolds²
- ~95% of Magnesium resorbed at 12 months³

Magmaris – the first clinically proven magnesium bioresorbable scaffold


Backbone

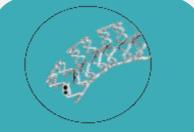
Mg alloy Tantalum markers

6-crown & 2-link design

150 µm strut thickness and width

~95% of Magnesium resorbed at 12 months

*In Raman Spectroscopy at 24 months, the PLLA characteristic peak pattern in the scaffold coating was partially not detectable; however an average signal of the pattern was detected in all samples.

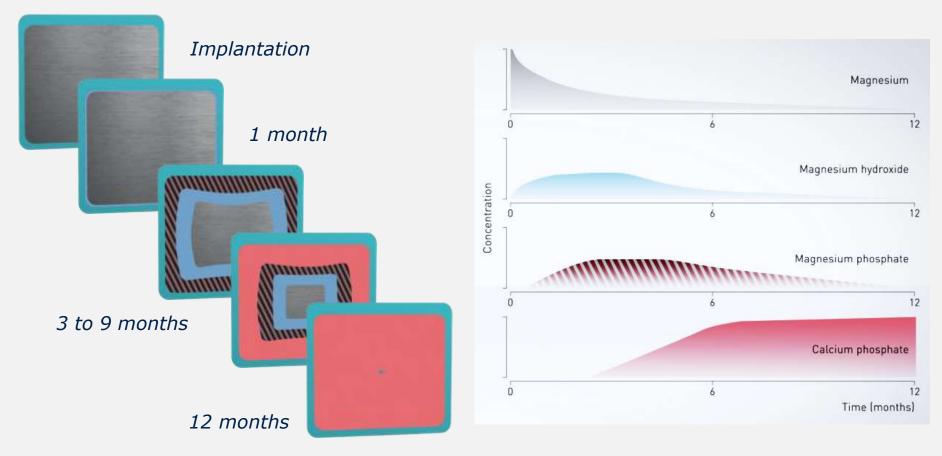

The Magmaris backbone CE mark since June 2016

Corrugated rings

Open cell design for acute flexibility

2 links, 90°shifted

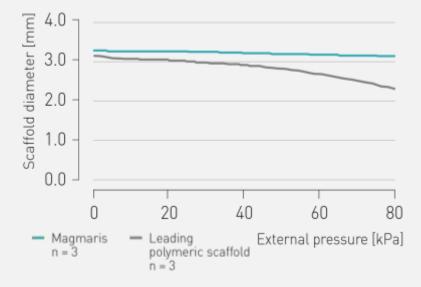
Uniform flexibility in all 3D directions of the vessel



<u>6 crown design</u> Radial support

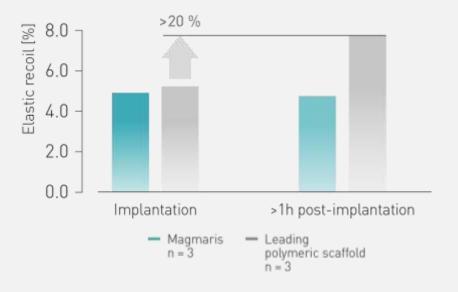
<u>Strut dimension</u> <u>150x150µm</u> Radial support

Resorption process of the magnesium backbone

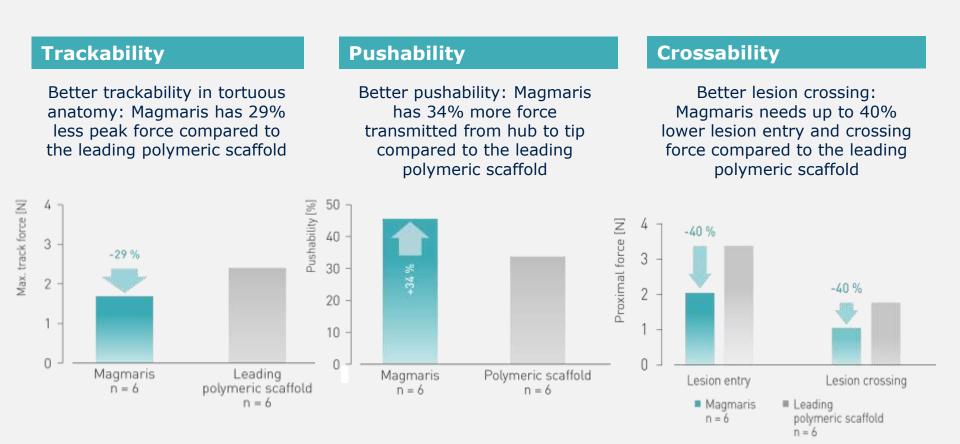


The graph shows the resorption process of Magnesium with the intermediate steps of Magnesium hydroxide and Magnesium phosphate until the moment where only a footprint (amorphous Calcium phosphate) is left.

Magmaris backbone features: radial resistance and acute recoil


Radial resistance

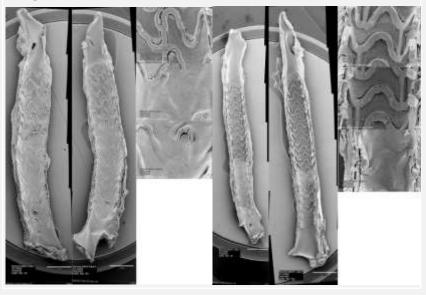
Strong radial resistance: Magmaris has no significant diameter change under increasing physiological pressure, whereas leading polymeric scaffold diameter is decreasing under increasing pressure



Acute recoil

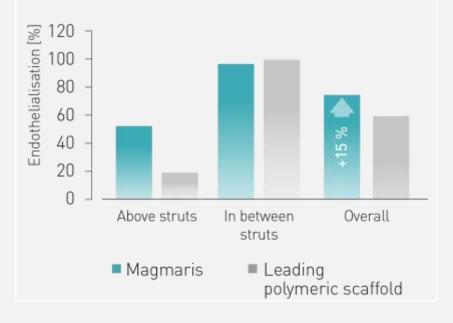
No recoil increase: Conventional leading polymeric scaffold diameter decrease >20% within the first hour

Magmaris deliverability: trackability, pushability and crossability


Magmaris shows a rapid endothelial coverage

Preclinical test

In a rabbit study, endothelialisation was evalutated with SEM* 28 days after implantation. Higher endothelialisation is associated with a lower thrombosis risk.


Magmaris

Leading polymeric scaffold

Endothelial coverage at 28 days

Rapid endothelial coverage: Magmaris shows 15 % better endothel-ialization compared to the leading polymeric scaffold, especially above struts

Clinical Outcome until 12-month follow-up

	6-Month		12-Month	
	N=120	%	N=118	%
TLF ¹	4	3.3	4	3.4
Cardiac death	1 ²	0.8	1 ²	0.8
Target vessel MI	1	0.8	1	0.8
Clinically driven TLR	2	1.7	2	1.7
CABG	0	0.0	0	0
Definite-or-probable scaffold thrombosis	0	0.0	0	0.0

1. Composite of cardiac death, target vessel myocardial infarction, clinically driven target lesion revascularization or CABG

2. A 58-year old man (CV RF: smoking, hypertension and hyperlipidemia, stable angina CCS Class II) was treated with a DREAMS 2G 3.0x20 mm in the distal RCA. The patient experienced an unwitnessed death 134 days after the procedure. Since a cardiac cause could not be ruled out, the independent Clinical Event Committee adjudicated the event as a cardiac death.

Conclusion

- Approximately 95% of magnesium of the Magmaris scaffold is resorbed at 1-year follow-up
- In the BIOSOLVE-II trial, there was no definite or probable scaffold thrombosis at 6 or 12-month follow-up^{1,2}
- Cautious use with careful selection of patients and lesions is currently recommended to optimize patient outcomes after treatment with this technology³
- Magmaris is the first clinically proven magnesium bioresorbable scaffold
- Magmaris offers a viable alternative to polymeric scaffold
- Ongoing and future studies will better define the role of this bioresorbable scaffold

1. Haude M. et al. Lancet 2016;387:31-9.

2. Haude M. et al. Eur Heart J 2016; 37: 2701-9.

3. Fajadet J. et al. EuroIntervention 2016; 12: 828-33.