

Morning Roundtable Forum - Antithrombotic Therapy: Finding the "Sweet-Spot"

PCI vs. CABG in LM PCI: Where are we in 2017? Davide Capodanno, MD, PhD Ferrarotto Hospital, University of Catania

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

D. Capodanno

Disclosure Statement of Financial Interest

Within the past 12 months, I, **Davide Capodanno**, have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial relationship	Company
 Speakers' honoraria 	None
Consulting	Abbott Vascular (VHD branch)
 Advisory Board 	None

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy

Decision-Making for Left Main Disease

Less invasive and shorter hospitalization Lower risk of periprocedural adverse events

Long-term durability due to low risk of disease progression

Lower risk of MACCE and repeat

- revascularization
- More complete revascularization
- CABG Protection against events related to disease progression

ບັ

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Windecker S, Piccolo R. J Am Coll Cardiol. 2016;68:1010-3

PCI vs CABG for Left Main Disease Study-level meta-analysis of 4 randomized trials (N=1,611)

1-Year Outcomes							
	PCI	CABG	OR (95% CI)	OR (95% CI)	Р		
Death	3.0%	4.1%		0.74 (0.43-1.28)	0.29		
МІ	2.8%	2.9%		0.98 (0.54-0.78)	0.95		
Stroke	0.1%	1.7%		0.15 (0.03-0.67)	0.01		
Death, MI, stroke	5.3%	6.8%		0.77 (0.48-1.22)	0.26		
Revascularization	11.4%	5.4%		2.25 (1.54-3.28)	<0.001		
MACCE	14.5%	11.8%		1.28 (0.95-1.72)	0.11		
0.01 0.1 1 10 100 Favors PCI Favors CABG							

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Capodanno D, et al, J Am Coll Cardiol. 2011;58:1426-32

PCI vs CABG for Left Main Disease Pooled analysis of SYNTAX LM and PRECOMBAT (N=1,305)

5-Year Outcomes

Low to Intermediate (0-32) SYNTAX Scores

High (≥33) SYNTAX Scores

UNIVERSITÀ degli STUDI di CATANIA

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Cavalcante R, et al. J Am Coll Cardiol. 2016;68:999-1009

Recommendations for LM Revascularization

PCI	CABG

Low SxScore 0-22	IB	ΙB
Intermediate SxScore 23-32	lla B	ΙB
High SxScore >32	III B	IB

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Levine G, et al. J Am Coll Cardiol. 2011;58:44-122 Windecker S, et al. Eur Heart J. 2014;35:2541-619

What Makes Current Guidelines Based on SYNTAX Outdated, Stimulating New Trials?

- 1. In SYNTAX, left main disease was just a subgroup
- 2. Patients where CABG has established benefits (ie, MVD, high SYNTAX score) were included
- 3. One year follow-up proved to be an insufficient timeframe to capture the true benefit accrual of CABG
- 4. First-generation drug-eluting stents were used
- 5. IVUS/FFR guidance was uncommon
- 6. Discretional angiographic follow up overly inflated the number of events in the PCI arm
- 7. Best standards of CABG were also underused

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

EXCEL and NOBLE in Perspective

	SYNTAX	EXCEL	NOBLE
All-comers	Yes	No	No
Patient population	LM/3VD	LM	LM
SYNTAX score	Any	≤ 32	Low
Primary endpoint*	Death/MI/CVA/TVR	Death/MI/CVA	Death/MI/CVA/TVR
Follow up	1 year	3 year (median)	3 year (median)
IVUS	Infrequent	Recommended	Recommended
FFR guidance	Infrequent	Recommended	Recommended
Stent	PES	EES	BES recommended
Angio FU	At discretion	Not recommended	Not recommended

*The definition of MI in EXCEL included large periprocedural MI. NOBLE did not include periprocedural MI in the primary endpoint

Capodanno D, Bass TA. Circ Cardiovasc Interv [ePub ahead of print]

EXCEL and NOBLE – A Closer Look

EXCEL

NOBLE

Randomized pts, centers, countries, geographies	1,905 pts at 126 sites in 17 countries (US, EU)	1,201 pts at 36 sites in 9 countries (EU)
Recruitment period	2010-2014	2008-2015
Age*	66 years (mean)	66 years (mean)
Diabetes mellitus*	30%	15%
LVEF*	57% (mean)	60% (mean)
Acute coronary syndrome*	24%	18%
SYNTAX score* (Core-lab)	27 (mean)	23 (mean)
Distal location*	82%	81%
IVUS use*	77%	74%
Off-Pump CABG	29%	16%
Arterial conduits used	99%	95%
Only arterial conduits used	25%	14%

*Data are shown for the PCI cohort

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Capodanno D, Bass TA. Circ Cardiovasc Interv [ePub ahead of print]

EXCEL: 3 Years Outcomes

	PCI (n=948)	CABG (n=957)	Diff [upper confidence limit]	P _{NI}	HR [95%CI]	P _{Sup}
Primary endpoint						
Death, stroke or MI at 3 years	15.4%	14.7%	0.7% [4.0%]†	0.018	-	-
Secondary endpoints						
Death, stroke or MI at 30 days	4.9%	7.9%	-3.1% [-1.2%]	<0.001	-	-
Death, stroke, MI or ischemia-driven revasc at 3 years	23.1%	19.1%	4.0% [7.2%]	0.01	-	-
Death, stroke or MI at 3 years	15.4%	14.7%	-	-	1.00 [0.79, 1.26]	0.98

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Stone GW, et al. N Engl J Med. 2016;375:2223-2235

EXCEL: Landmark Analysis

	From randomization to 30 days			From 30 days to 3 years				
	PCI (n=948)	CABG (n=957)	HR [95%CI]	P value	PCI (n=939)	CABG (n=947)	HR [95%CI]	P value
Death, stroke or MI	4.9%	7.9%	0.61 [0.42, 0.88]	0.008	11.5%	7.9%	1.44 [1.06, 1.96]	0.02
Death	1.0%	1.1%	0.90 [0.37, 2.22]	0.82	7.3%	4.9%	1.44 [0.98, 2.13]	0.06
Stroke	0.6%	1.3%	0.50 [0.19, 1.33]	0.15	1.8%	1.8%	1.00 [0.49, 2.05]	1.00
MI	3.9%	6.2%	0.63 [0.42, 0.95]	0.02	4.2%	2.5%	1.71 [1.00, 2.93]	0.05

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Stone GW, et al. N Engl J Med. 2016;375:2223-2235

NOBLE: 5-Year Outcomes

	PCI* (n=592)	CABG* (n=592)	HR [95%CI]	P _{Sup}
MACCE	29%	19%	1.48 (1.11-1.96)	0.007
Death	12%	9%	1.07 (0.67-1.72)	0.77
Non-procedural MI	7%	2%	2.88 (1.40-5.90)	0.004
Stroke	5%	2%	2.25 (0.93-5.48)	0.07
Repeat revascularization	16%	10%	1.50 (1.04-2.17)	0.032

*Data are shown as 5-year K-M estimates

Mäkikallio T, et al. Lancet. 2016;388:2743-2752

EXCEL and NOBLE - Interpretation

In patients with left main coronary artery disease and low or intermediate SYNTAX scores by site assessment, PCI with everolimus-eluting stents was noninferior to CABG with respect to the rate of the composite end point of death, stroke, or myocardial infarction at 3 years.

NOBLE The findings of this study suggest that CABG might be better than PCI for treatment of left main stem coronary artery disease.

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Stone GW, et al. N Engl J Med. 2016;375:2223-2235 Mäkikallio T, et al. Lancet. 2016;388:2743-2752

More Alike Than Different?

 SITÀ
 Ferrarotto Hospital

 UDI
 A.O.U. Policilnico-Vittorio Emanuele

 NNA
 Catania, Italy

Capodanno D, Bass TA. Circ Cardiovasc Interv. 2016;9. pii: e004782

Aligning Outcome Rates of EXCEL and NOBLE at Three Years

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Christiansen H, et al. N Engl J Med 2017 [ePub ahead of print, adapted]

PCI vs CABG for Left Main Disease Study-level meta-analysis of 6 randomized trials (N=4,700)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy

Mahmoud AN, et al, Catheter Cardiovasc Interv. 2017 [ePub ahead of print]

Are All Endpoints Created Equal?

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

Repeat Revascularization: <u>The Case for Weighting</u> 1,204 matched PCI and CABG patients from DELTA

*Using weights of 1.00, 0.47, 0.38 and 0.25 for Death, CVA, MI and TVR, respectively.

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania. Italy Capodanno D, et al. JACC Cardiovasc Interv. 2016;9:2280-2288

Risk Stratification for LM Revascularization

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy

SYNTAX Score II: What Makes It Different? 12 Angiographic and 6 Clinical Variables

UNIVERSITÀ | Ferrarotto Hospital degli STUDI A.O.U. Policlinico-Vittorio Emanuele di CATANIA | Catania, Italy

D. Capodanno

Can We Trust the SYNTAX score Anymore?

*Percentages K-M estimates at 3 years (EXCEL) or 5 years (NOBLE)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Stone GW, et al. TCT 2016; Christiansen EH, et al. TCT 2016

SYNTAX Score II in Left Main PCI or CABG Pooled analysis of SYNTAX LM and PRECOMBAT (N=1,299)

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Apapted from Cavalcante, R et al. J Am Coll Cardiol. 2016;68:999–1009

Risk Scores In Everyday Clinical Practice

Ferrarotto Hospital A.O.U. Policlinico-Vittorio Emanuele Catania, Italy Capodanno D. TCT 2016, Washington DC

After EXCEL and NOBLE Implications for Next Guidelines

- After EXCEL and NOBLE, the SYNTAX score-based approach for left main disease recommendations should be revisited. At the very least, based on EXCEL, the low and intermediate categories should be collapsed
- 2 Recommendations could become class I for PCI being no longer an "alternative" to CABG, but an "acceptable" or even "preferred" choice in selected patients
- 3 With two more randomized trials, the current B level of evidence for left main revascularization by PCI or CABG should be upgraded to A
- In general, I expect new left main recommendations to be more patient-centered based on the early- and long-term trade-offs of each procedure, focused on ways to improve outcomes for PCI and CABG patients alike by optimizing background medical therapy

- Isolated left main disease with lower anatomical complexity (i.e. ostium or shaft only, simple distal left main bifurcation) is the ideal candidate for ad hoc PCI
- 2. Complex left main disease involving the bifurcation or left main in the context of multivessel disease requires Heart Team consensus. The SYNTAX scores I and II are useful but imperfect companions for decision-making (ie, after NOBLE and EXCEL I'm not sure about SYNTAX score I in general, and also about patients recommended for CABG by the SYNTAX score II...)
 - Low risk patients with complete revascularization achievable, high risk surgical candidates, or patient preference after discussion of pros and cons: Elective PCI
 - Complete revascularization achievable with PCI at the price of complex interventions and too many stents implanted: CABG

